Saved Bookmarks
| 1. |
Let `f`be a real-valued function satisfying `f(x)+f(x+4)=f(x+2)+f(x+6)`Prove that `int_x^(x+8)f(t)dt`is constant function. |
|
Answer» Given that `f(x)+f(x+4)=f(x+2)+f(x+6)`…………1 Replacing `x` by `x+2` we get `f(x+2)+f(x+6)=f(x+4)+f(x+8)`…………………2 From equation 1 and 2 we get `f(x)=f(x+8)`……………3 or `int_(x)^(x+8)f(t)dt+int_(0)^(8)f(t)dt` Thus, `g` is a constant function. |
|