Saved Bookmarks
| 1. |
Let `f` be a positive function. If `I_1 = int_(1-k)^k x f[x(1-x)] dx` and `I_2 = int_(1-k)^k f[x(1-x)] dx,` where `2k-1 gt 0.` Then `I_1/I_2` isA. 2B. kC. `1//2`D. 1 |
|
Answer» Correct Answer - C Given , `I_(1)=int_(1-k)^(k)xf[x(1-x)]dx` `rArrI_(1)=int_(1-k)^(k)(1-x)f[(1-x)x]dx` `=int_(1-k)^(k)f[(1-x)]dx]int_(1-k)^(k)xf(1-x)]dx` `rArrI_(1)=I_(2)-I_(1)rArr(I_(1))/(I_(2))=(1)/(2)` |
|