Saved Bookmarks
| 1. |
Let `d/(dx) (F(x))= e^(sinx)/x, x>0`. If `int_1^4 2e^sin(x^2)/x dx = F(k)-F(1)`, then possible value of k is: |
|
Answer» `I=int_(1)^(4)(2e^(sinx^(2)))/xdx=F(k)-F(1)=[F(x)]_(1)^(k)` Now put `x^(2)=t` `:.2xdx=dt` `:.I=int_(1)^(16)(e^(sint))/tdt=[F(t)]_(1)^(16)` `:.I=F(16)-F(1)` `=:.k=16` |
|