1.

Let `d/(dx) (F(x))= e^(sinx)/x, x>0`. If `int_1^4 2e^sin(x^2)/x dx = F(k)-F(1)`, then possible value of k is:

Answer» `I=int_(1)^(4)(2e^(sinx^(2)))/xdx=F(k)-F(1)=[F(x)]_(1)^(k)`
Now put `x^(2)=t`
`:.2xdx=dt`
`:.I=int_(1)^(16)(e^(sint))/tdt=[F(t)]_(1)^(16)`
`:.I=F(16)-F(1)`
`=:.k=16`


Discussion

No Comment Found