Saved Bookmarks
| 1. |
`L e tA=int_0^oo(logx)/(1+x^3)dxdotT h e nfin dt h ev a l u eofint_0^oo(xlogx)/(1+x^3)dx`in terms of `Adot` |
|
Answer» `B=int_(0)^(oo)(x log x)/(1+x^(3))dx` `=int_(0)^(oo) ((x+1)logx-log)/(1+x^(3))dx` `=int_(0)^(oo) (logx)/(x^(2)-x+1)dx-A` let `I=int_(0)^(oo) (logx)/(x^(2)-x+1) dx` Put `x=1/t` `:. I=int_(oo)^(0) ("log"1/t)/(-1/(t^(2))-1/t+1)((-dt)/(t^(2)))` `=-int_(0)^(oo) (logt)/(t^(2)-t+1)dt` `=-I` or `2I=0` or `I=0` `:.B=-A` |
|