1.

`int_0^x[sint]dt ,w h e r ex in (2npi,(2n+1)pi),n in N ,a n d[dot]`denotes the greatest integer function is equal to`-npi`(b) `-(n+1)pi``2npi`(d) `-(2n+1)pi`A. `4n-cosx`B. `4n-sinx`C. `4n+1-cosx`D. `4n-1-cosx`

Answer» Correct Answer - C
`int_(0)^(x)|sint|dt=int_(0)^(2npi)|sint|dt+int_(2npi)^(x)|sint|dt`
`=2nint_(0)^(pi) |sint|dt+int_(2npi)^(x)sin tdt`
(as `x` lies in either first or second quadrant)
`=2n(-cost)_(0)^(pi)+(-cost)_(2npi)^(x)=4n-cosx+1`


Discussion

No Comment Found