Saved Bookmarks
| 1. |
`int_0^x{int_0^uf(t)dx}d ui se q u a lto``int_0^x(x-u)f(u)d u``int_0^x uf(x-u)d u``xint_0^xf(u)d u`(d) `xint_0^x uf(u-x)d u`A. `int_(0)^(x)(x-u)f(u)du`B. `int_(0)^(x) uf(x-u)du`C. `x int_(0)^(x)f(u)du`D. `x int_(0)^(x)uf(u-x)du` |
|
Answer» Correct Answer - A::B L.H.S `=int_(0)^(x) {int_(0)^(u)f(t)dt}du` Integrating by parts choose 1 as the second function. Then, L.H.S`={uint_(0)^(u)f(t)dt}_(0)^(x)-int_(0)^(x)f(u)u du` `=x int_(0)^(x)f(t)dt-int_(0)^(x)f(u)u du` `=x int_(0)^(x)f(u)du-int_(0)^(x)f(u) udu-int_(0)^(x)f(u)(x-u)du` `=R.H.S`. |
|