Home
About Us
Contact Us
Bookmark
Saved Bookmarks
Current Affairs
General Knowledge
Chemical Engineering
UPSEE
BSNL
ISRO
BITSAT
Amazon
ORACLE
Verbal Ability
→
General Awareness
→
IIT JEE in General Awareness
→
`int_(0)^(pi//4)(2sec^(2)x+x^(3)+2)dx`
1.
`int_(0)^(pi//4)(2sec^(2)x+x^(3)+2)dx`
Answer» Correct Answer - `(pi^(4))/(1024) + (pi)/2+2`
Show Answer
Discussion
No Comment Found
Post Comment
Related InterviewSolutions
Consider the integral `I=int_(0)^(2pi)(dx)/(5-2cosx)` Making the substitution `"tan"1/2x=t`, we have `I=int_(0)^(2pi)(dx)/(5-2cosx)=int_(0)^(0)(2dt)/((1+t^(2))[5-2(1-t^(2))//(1+t^(2))])=0` The result is obviously wrong, since the integrand is positive and consequently the integral of this function cannot be equal to zero. Find the mistake.
The area bounded by the curves `y=cosx` and `y=sinx` between the ordinates `x=0` and `x=(3pi)/2` isA. `4sqrt(2) + 2`B. `4sqrt(2) +1`C. `4sqrt(2) + 1`D. `4sqrt(2) - 2`
Obtain the area enclosed by region bounded by the curves `y = x ln x` and ` y = 2x-2x^(2)`.A. `7//6`B. `7//24`C. `12//7`D. `7//12`
If `I_n=int_0^pi e^x(sinx)^n dx ,` then `(I_3)/(I_1)` is equal toA. `3//5`B. `1//5`C. `1`D. `2//5`
Prove that:`I_n=int_0^oox^(2n+1)e^-x^2dx=(n !)/2,n in Ndot`
If f(x) is continuous and `int_(0)^(9)f(x)dx=4`, then the value of the integral `int_(0)^(3)x.f(x^(2))dx` isA. 2B. 18C. 16D. 4
`lim_(trarr0) int_(0)^(2pi)(|sin(x+t)-sinx|)/(|t|)dx` equalsA. 2B. 4C. 43469D. 1
Given that `lim_(nrarroo) sum_(r=1)^(n) (log_(e)(n^(2)+r^(2))-2log_(e)n)/n = log_(e)2+pi/2-2`, then evaluate : ` lim_(nrarroo) (1)/(n^(2m))[(n^(2)+1^(2))^(m)(n^(2)+2^(2))^(m) "......"(2n^(2))^(m)]^(1//n)`.
`lim_(nrarroo) sum_(r=0)^(n-1) (1)/(sqrt(n^(2)-r^(2)))`
`lim_(nrarroo) (((n+1)(n+2)"........"3n)/(n^(2n)))^(1//n)` is equal to :A. `(27)/(e^(2))`B. `(9)/(e^(2))`C. `3 log3-2`D. `(18)/(e^(4))`
Reply to Comment
×
Name
*
Email
*
Comment
*
Submit Reply
Your experience on this site will be improved by allowing cookies. Read
Cookie Policy
Reject
Allow cookies