Saved Bookmarks
| 1. |
`int_0^1log(sqrt(1-x)+sqrt(1+x))dx` equals: |
|
Answer» Correct Answer - `(1)/(2)log1-(1)/(2)+(pi)/(4)` Let `I = int _(0)^(1) log (sqrt(1-x)+sqrt(1+x))dx` Put `x= cos 2 theta` `rArr dx =- 2 sin 2 theta d theta` ` :. =- 2 int _(pi//4)^(0) log [ sqrt(1-cos 2 theta)+sqrt(1+cos 2 theta)] (sin 2 theta) d theta` `=- int _(pi//4)^(0) log [ (sqrt(2) sin theta+ cos theta)]sin 2 theta d theta` ` =- 2 int _(pi//4)^(0) [ (log sqrt(2))sin 2 theta+ log (sin theta + cos theta ) * sin 2 theta ] d theta` `=- 2 log sqrt(2)[(-cos 2 theta )/(2)] _(pi//4)^(0)- 2 int _(pi//4)^(0) log underset(I) ((sin theta + cos theta))underset(II) (* sin 2 theta d theta)` ` = log sqrt(2)-2 [ - {log (sin theta + cos theta) * (cos 2 theta)/(2)}_(pi//4)^(0)- int_(pi//4)^(0) (( cos theta - sin theta)/(cos theta sin theta)xx(- cos 2 theta)/(2)) d theta]` `= log (sqrt(2)) -2 [ 0 + (1)/(2) int _(pi//4)^(0) ( cos theta - sin theta) ^(2)d theta]` `= (1)/(2) log 2 - int _(pi//4)^(0) (1- sin theta) d theta` `= (1)/(2) log 2 - [ theta + (cos 2 theta)/(2)]_(pi//4)^(0)` ` =(1)/(2) log 2 - ((1)/(2) - (pi)/(4))=(1)/(2)+(pi)/(4)` |
|