1.

`int_0^1log(sqrt(1-x)+sqrt(1+x))dx` equals:

Answer» Correct Answer - `(1)/(2)log1-(1)/(2)+(pi)/(4)`
Let `I = int _(0)^(1) log (sqrt(1-x)+sqrt(1+x))dx`
Put `x= cos 2 theta`
`rArr dx =- 2 sin 2 theta d theta`
` :. =- 2 int _(pi//4)^(0) log [ sqrt(1-cos 2 theta)+sqrt(1+cos 2 theta)] (sin 2 theta) d theta`
`=- int _(pi//4)^(0) log [ (sqrt(2) sin theta+ cos theta)]sin 2 theta d theta`
` =- 2 int _(pi//4)^(0) [ (log sqrt(2))sin 2 theta+ log (sin theta + cos theta ) * sin 2 theta ] d theta`
`=- 2 log sqrt(2)[(-cos 2 theta )/(2)] _(pi//4)^(0)- 2 int _(pi//4)^(0) log underset(I) ((sin theta + cos theta))underset(II) (* sin 2 theta d theta)`
` = log sqrt(2)-2 [ - {log (sin theta + cos theta) * (cos 2 theta)/(2)}_(pi//4)^(0)- int_(pi//4)^(0) (( cos theta - sin theta)/(cos theta sin theta)xx(- cos 2 theta)/(2)) d theta]`
`= log (sqrt(2)) -2 [ 0 + (1)/(2) int _(pi//4)^(0) ( cos theta - sin theta) ^(2)d theta]`
`= (1)/(2) log 2 - int _(pi//4)^(0) (1- sin theta) d theta`
`= (1)/(2) log 2 - [ theta + (cos 2 theta)/(2)]_(pi//4)^(0)`
` =(1)/(2) log 2 - ((1)/(2) - (pi)/(4))=(1)/(2)+(pi)/(4)`


Discussion

No Comment Found