1.

In the given question, two equations numbered l and II are given. Solve both the equations and mark the appropriate answerI. \({x^{3/2}} - \;\frac{{81}}{{\sqrt x }}\; = 0\)II. 20y2 – 119y + 176 = 01. x > y2. x < y3. x ≥ y4. x ≤ y5. x = y or the relationship between x and y cannot be established

Answer» Correct Answer - Option 5 : x = y or the relationship between x and y cannot be established

I. \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG4bWdamaaCaaaleqabaWdbiaaiodacaGGVaGaaGOmaaaakiab % gkHiTiaacckadaWcaaWdaeaapeGaaGioaiaaigdaa8aabaWdbmaaka % aapaqaa8qacaWG4baaleqaaaaakiaacckacqGH9aqpcaaIWaaaaa!4194! {x^{3/2}} - \;\frac{{81}}{{√ x }}\; = 0\)\(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qacaWG4bWdamaaCaaaleqabaWdbiaaiodacaGGVaGaaGOmaaaakiab % gkHiTiaacckadaWcaaWdaeaapeGaaGioaiaaigdaa8aabaWdbmaaka % aapaqaa8qacaWG4baaleqaaaaakiaacckacqGH9aqpcaaIWaaaaa!4194! {x^{3/2}} - \;\frac{{81}}{{√ x }}\; = 0\)\({x^{3/2}} - \;\frac{{81}}{{√ x }}\; = 0\)

⇒ \(% MathType!MTEF!2!1!+- % feaahqart1ev3aqatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn % hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr % 4rNCHbGeaGqiVu0Je9sqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9 % vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x % fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaaeaaaaaaaaa8 % qadaWcaaWdaeaapeGaaiiOaiaadIhapaWaaWbaaSqabeaapeWaaSaa % a8aabaWdbiaaiodaa8aabaWdbiaaikdaaaaaaOGaaiiOaiabgEna0k % aacckadaGcaaWdaeaapeGaamiEaaWcbeaakiaacckacaGGGcGaeyOe % I0IaaGioaiaaigdacaGGGcaapaqaa8qacaGGGcGaeyOgIyTaamiEaa % aacqGH9aqpcaaIWaaaaa!4B95! \frac{{\;{x^{\frac{3}{2}}}\; \times \;√ x \;\; - 81\;}}{{\;\surd x}} = 0\)\(\frac{{\;{x^{\frac{3}{2}}}\; \times \;√ x \;\; - 81\;}}{{\;\surd x}} = 0\)

⇒ x3/2 ×  x1/2 – 81 = 0

⇒ x2 = 81

⇒ x = ± 9

II. 20y2 – 119y + 176 = 0

⇒ 20y2 – 64y – 55y + 176 = 0

⇒ 4y(5y – 16) – 11(5y – 16) = 0

⇒ (5y – 16)(4y – 11) = 0

⇒ \(y = \;\frac{{16}}{5}\;,\;\frac{{11}}{4}\)

 

Value of x

Value of y

Relation

9

16/5

 x > y

9

11/4

 x > y

-9

16/5

 x < y

-9

11/4

 x < y

 x = y or the relationship between x and y cannot be established

We can not take the negative value of x as in the question there is 

√x is positive

x2 is both positive and negative



Discussion

No Comment Found

Related InterviewSolutions