Saved Bookmarks
| 1. |
`Ifx=int_0^y(dt)/(sqrt(1+9t^2))a n d(d^2y)/(dx^2)=a y ,t h e nfin da` |
|
Answer» `x=int_(0)^(y)(dt)/(sqrt(1+9t^(2)))` Differentiating w.r.t `y`, we get `(dx)/(dy)=1/(sqrt(1+9y^(2)))` or `(dy)/(dx)=sqrt(1+9y^(2))` or `d/(dx)((dy)/(dx))=d/(dy)(sqrt(1+9y^(2)))(dy)/(dx)` or `(d^(2)y)/(dx^(2))=(18y)/(2sqrt(1+9y^(2)))sqrt(1+9y^(2))=9y` or `a=9` |
|