Saved Bookmarks
| 1. |
`Ifint_(sinx)^1t^2f(t)dt=1=1-s inx ,w h e r ex in (0,pi/2),`then find the value of `f(1/(sqrt(3)))dot`A. 3B. `sqrt(3)`C. `1//3`D. None of these |
|
Answer» Correct Answer - A Since `int_(sinx)^(1)t ^(2)f(t)dt =1-sin x`, thus to find f(x). On differentiating both sides using Newton Leibnitz formula i . e. `(d)/(dx)int_(sinx)^(1)t^(2)f(t)dt =(d)/(dx)(1-sinx)` `rArr {1^(2)f(1)} *(0)- (sin^(2)x)* cosx=-cosx` `rArr f(sin x)=(1)/(sin^(2)x)` For `f ((1)/(sqrt(3)))` is obtained when ` sin x = 1//sqrt(3)` i .e `f((1)/(sqrt(3)))=(sqrt(3))^(2)=3` |
|