Saved Bookmarks
| 1. |
If `y = tan^(-1) (sec x + tan x) " then " (dy)/(dx)=` ?A. `(1)/(2)`B. `(-1)/(2)`C. 1D. none of these |
|
Answer» Correct Answer - A `y = tan^(-1) ((1 + sin x)/(cos x)) = tan^(-1) [({cos (.^(x)//_(2)) + sin (.^(x)//_(2))}^(2))/(cos^(2) (.^(x)//_(2)) - sin^(2) (.^(x)//_(2)))] = tan^(-1) {(cos (.^(x)//_(2)) + sin (.^(x)//_(2)))/(cos (.^(x)//_(2)) - sin (.^(x)//_(2)))}` `= tan^(-1) {(1 + tan (.^(x)//_(2)))/(1 - tan (.^(x)//_(2)))} = tan^(-1) {tan ((pi)/(4) + (x)/(2))} = ((pi)/(4) + (x)/(2))` |
|