Saved Bookmarks
| 1. |
If the function `f(x) = {((sin^(2)ax)/(x^(2))","," when "x != 0),(" k,"," when " x = 0):}`is continuous at x = 0 then k = ?A. 3B. `-3`C. `-5`D. 6 |
|
Answer» Correct Answer - D `f((pi)/(2) - 0) = underset(h rarr 0)(lim) (k cos ((pi)/(2) - h))/(pi -2((pi)/(2) - h)) = underset(h rarr 0)(lim) (k sin h)/(2h) = (k)/(2) underset(h rarr 0)(lim) (sin h)/(h) = ((k)/(2) xx 1) = (k)/(2)` `f((pi)/(2) + 0) = underset(h rarr 0)(lim) (k cos ((pi)/(2) + h))/(pi -2((pi)/(2) + h)) = underset(h rarr 0)(lim) (-k sin h)/(-2h) = (k)/(2) underset(h rarr 0)(lim) (sin h)/(h) = (k)/(2)` `:. (k)/(2) = 3 rArr k = 6` |
|