Saved Bookmarks
| 1. |
If `L(m,n)=int_(0)^(1)t^(m)(1+t)^(n),dt`, then prove that `L(m,n)=(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)` |
|
Answer» Correct Answer - NA `L(m,n)=int_(0)^(1)t^(m)(1+t)^(n)dx` `=[(t^(m+1))/(m+1)(1+t)^(n)]_(0)^(1)-int_(0)^(1)n(1+t)^(n-1)(t^(m+1))/(m+1)dx` `=[(t^(m+1))/(m+1)(1+t^(n))]_(0)^(1)-n/(m+1)int_(0)^(1)t^(m+1)(1+t)^(n-1)dx` `(2^(n))/(m+1)-n/(m+1)L(m+1,n-1)` |
|