Saved Bookmarks
| 1. |
If `int_0^(pi/2)logsinthetadtheta=k ,`then find the value of `int_pi^(pi/2)(theta/(s intheta))^2dtheta`in terms of `k` |
|
Answer» `I=int_(0)^(pi//2)((theta)/(sin theta))^(2)d theta` `=int_(0)^(pi//2) theta^(2) cosec^(2) theta d theta` `=[theta^(2) (-cot theta)]_(0)^(pi//2)-int_(0)^(pi//2) 2theta (-cot theta) d theta` (Integrating by parts) `=[lim_(theta to oo) theta^(2).cot theta]+2 int_(0)^(pi//2) theta cot theta d theta` `=0+2[[ theta log sin theta]_(0)^(pi//2)-int_(0)^(pi//2) log sin theta d theta]` (Integrating by parts) `=2[-lim_(theta to oo) theta n sin theta -k]` `=-2k` |
|