Saved Bookmarks
| 1. |
If `I_(n)=int_(0)^(pi)x^(n)sinxdx`, then find the value of `I_(5)+20I_(3)`. |
|
Answer» Correct Answer - `pi^(5)` `I_(m)=int_(0)^(pi)x^(m) sin x dx` `=[-x^(m)cosx]_(0)^(pi)+n int_(0)^(pi)x^(n-1)cos x dx` `=pi^(n)+n[x^(n-1)sinx ]_(0)^(pi)-n(n-1)int_(0)^(pi)x^(n-2)sin x dx` `implies I_(m)=pi^(n)+n.0-n(n-1)I_(n-2)` Put `n=5` `I_(5)=pi^(5)-20I_(3)` `I_(5)+20I_(3)=pi^(5)` |
|