1.

If `fa n dg`are continuous function on `[0,a]`satisfying `f(x)=f(a-x)a n dg(x)(a-x)=2,`then show that`int_0^af(x)g(x)dx=int_0^af(x)dxdot`

Answer» Correct Answer - NA
`int_(0)^(a)f(x)g(x)dx`
`=int_(0)^(a)f(a-x)g(a-x)dx`
`=int_(0)^(a)f(x).{2-g(x)}dx`
`=2int_(0)^(a)f(x)dx-int_(0)^(a)f(x)g(x)dx`
or `2int_(0)^(a)f(x)f(x)dx=2int_(0)^(a)f(x)dx`
or `int_(0)^(a)f(x)g(x)dx=int_(0)^(a)f(x)dx`


Discussion

No Comment Found