1.

If α and β are the roots of the equation ax2 + bx + c = 0 then the value of 1/α2 + 1/β2 is: 1. (a2 - 2cb)c22. (b2 – 2ca)/c23. (b2 + 2ca)/c24. (a2 + 2bc)/c2

Answer» Correct Answer - Option 2 : (b2 – 2ca)/c2

Given:

Our given quadratic equation is ax2 + bx + c = 0  

Concept used:

General quadratic equation in terms of roots is x2 – (α + β)x + αβ = 0

Formula used:

a2 + b2 = (a + b)2 – 2ab

Calculation:

By comparing given quadratic equation with general quadratic equation, we get

(α + β) = –b/a and αβ = c/a

Now, 1/α2 + 1/β2

⇒ (α+ β2)/(α2β2)

⇒ ((–b/a)2 – 2(c/a))/(c/a)2

⇒ (b2 – 2ca)/c2

∴ The required value of given expression is (b2 – 2ca)/c2



Discussion

No Comment Found

Related InterviewSolutions