Saved Bookmarks
| 1. |
gof तथा fog ज्ञात कीजिए , यदि (i) `f(x)=|x|` तथा `g(x)=|5x-2|` (ii) `f(x)=8x^(3)` तथा `g(x)=x^(1//3)` |
|
Answer» (i) `f(x)=|x|` तथा `g(x)=|5x-2|` `:.(gof)(x)=g{f(x)}=g{|x|}=|5|x|-2|` तथा `(fog)(x)=f{g(x)}=f{|5x-2|}` `=||5x-2||=|5x-2|` (ii) `f(x)=8x^(3)` तथा `g(x)=x^(1//3)` `(gof)(x)=g{f(x)}=g(8x^(3))=g(8x^(3))^(1//3)=2x` तथा `(fog)(x)=f{g(x)}=f(x^(1//3))=8(x^(3))^(1//3)=8x` |
|