Saved Bookmarks
| 1. |
For `x epsilonR`, and a continuous function `f` let `I_(1)=int_(sin^(2)t)^(1+cos^(2)t)xf{x(2-x)}dx` and `I_(2)=int_(sin^(2)t)^(1+cos^(2)t)f{x(2-x)}dx`. Then `(I_(1))/(I_(2))` isA. `-1`B. `1`C. `2`D. `3` |
|
Answer» Correct Answer - B `I_(1)=int_(sin^(2)t)^(1+cos^(2)t)xf(x(2-x))dx` `=int_(sin^(2)t)^(1+cos^(2)t)(2-x)f(x(2-x))dx=2I_(2)-I_(1)` or `2I_(1)=2I_(2)` or `(I_(1))/(I_(2))=1` |
|