Saved Bookmarks
| 1. |
Find the point on the curve `y=x^3-11 x+5`at which thetangent is `y" "=" "x" "" "11`. |
|
Answer» Equation of curve ` y = x^(3) - 11x + 5` ….(1) ` rArr (dy)/(dx) =3x^(2) - 11` Slope of tangent at point `(x, y) = 3x^(2) - 11` Slope of tangent y = x - 11 is = 1 `:. 3x^(2) - 11 = 1` ` rArr x^(2) = 4` `rArr x = 2 or x=-2` put x = - 2 in equation (1) `y= 2^(3) - 11 xx 2 + 5 =-9` but the equation (1) ` y = (-2)^(3) - 11 xx (-2) + 5 = 19` but the equation y = x - 11 is not satisfied by the point (-2, 19). `:. ` Required point = (2, -9) |
|