1.

Find the equation of tangent of tangent of the curve y = `b * e^(-x//a)` at that point at which the curve meets the Y-axis.

Answer» `y=b*e^(-x//a) …(1)`
At Y-axis, x=0
`:. Y=be^(0)= b`
So, we will find the equation of tantion of tangent at point (0, b). Now differentiare eq. (1) with respect to x.
`(dy)/(dx) =-b/a * e^(-x//a)`
Slope of tnagent at point (0, b) is
`m =-b/a * e^(0)=-b/a`
and equation of tangent
` y-b=-b/a*(x-0)`
`rArr ay - ab=-bx`
`rArr bx + ay = ab`.


Discussion

No Comment Found

Related InterviewSolutions