1.

Find `a` for which `lim_(n->oo) (1^a+2^a+3^a+...+n^a)/((n+1)^(a-1)[(na+1)+(na+2)+...+(na+n)])=1/60`A. 5B. 7C. `(-15)/2`D. `(-17)/2`

Answer» Correct Answer - B::D
Given limit `=(lim_(n to oo) 1/n sum_(r=1)^(n)(r/n)^(a))/(lim_(n to oo) (1+1/n)^(a-1)lim_(n to oo) 1/n sum_(r=1)^(n)(a+r/n))=(int_(0)^(1)x^(a)dx)/(int_(0)^(1)(a+x)dx)`
`=2/((2a+1)(a+1))=2/120`
`:.a=7` or `-17/2`


Discussion

No Comment Found