Saved Bookmarks
| 1. |
Evaluate `int_(1)^(e^(6))[(logx)/3]dx,` where [.] denotes the greatest integer function. |
|
Answer» Correct Answer - `(e^(6)-e^(3))` When `1ltxlte^(3),[(logx)/3]=0` and when `e^(3)ltxlte^(6),[(logx)/3]=1` `:. int_(1)^(e^(6))[(logx)/3]dx=int_(1)^(e^(3))[(logx)/3]dx+int_(e^(3))^(e^(6))[(logx)/3]dx` `=int_(1)^(e^(3)) 0dx+int_(e^(3))^(e^(6))1dx=(e^(6)-e^(3))` |
|