Saved Bookmarks
| 1. |
Evaluate `int_(0)^(pi)(xdx)/(1+cosalphasinx),0ltalphaltpi`. |
|
Answer» Correct Answer - `(alphapi)/(sin alpha)` Let `I= int _(0)^(pi) (x)/(1+ cos alpha sin x)dx` . . . (i) `rArr I = int _(0)^(pi) ((pi-x))/(1+cos alpha sin (pi- x))dx` ` rArr I= int _(0)^(pi) ((pi-x))/(1+ cos alpha sin a )dx` . . . (ii) On adding Eqs . (i) and (ii) , we get `rArr 2 I = pi int _(0)^(pi) ("sec "^(2)(x)/(2)dx)/((1+ " tan" ^(2)(x)/(2))+2 cos alpha " tan " (x)/(2))` Put `"tan " (x)/ (2)= t rArr "sec" ^(2)(x)/(2) dx = 2 dt` `rArr 2 I = 2 pi int _(0)^(oo) (dt)/((t + cos alpha )^(2)+sin ^(2)alpha)` `I= (pi)/(sinalpha) [ tan ^(-1) ((t- coas alpha)/( sin alpha))]_(0)^(oo)` ` = (pi)/(sin alpha)[ tan^(-1)(oo)- tan ^(-1) (cot alpha0]` ` = (pi)/(sin alpha)((pi)/(2)-((pi)/(2)- alpha))=(alphapi)/( sinalpha)` `:. I= (alpha pi)/( sin alpha)` |
|