Saved Bookmarks
| 1. |
Evaluate `int_(0)^(npi+t)(|cosx|+|sinx|)dx,` where `n epsilonN` and `t epsilon[0,pi//2]`. |
|
Answer» Correct Answer - `4n+sint-cost+1` Let `I=int_(0)^(npi+1)(|cosx|+|sinx|)dx` `=int_(0)^(npi)(|cosx|+|sinx|)dx+int_(npi)^(npi+1)(|cosx|+|sinx|)dx` `=2nint_(0)^(pi//2) (|cosx|+|sinx|)dx+int_(0)^(1)(|cosx|+|sinx|)dx` `=2n int_(0)^(pi//2) (cosx+sinx)dx+int_(0)^(1)(cosx+sinx)dx` `=4n+sint-cost+1` |
|