1.

Evaluate `int_(0)^(npi+t)(|cosx|+|sinx|)dx,` where `n epsilonN` and `t epsilon[0,pi//2]`.

Answer» Correct Answer - `4n+sint-cost+1`
Let `I=int_(0)^(npi+1)(|cosx|+|sinx|)dx`
`=int_(0)^(npi)(|cosx|+|sinx|)dx+int_(npi)^(npi+1)(|cosx|+|sinx|)dx`
`=2nint_(0)^(pi//2) (|cosx|+|sinx|)dx+int_(0)^(1)(|cosx|+|sinx|)dx`
`=2n int_(0)^(pi//2) (cosx+sinx)dx+int_(0)^(1)(cosx+sinx)dx`
`=4n+sint-cost+1`


Discussion

No Comment Found