1.

A value of `alpha` such that `int_(alpha)^(alpha+1) (dx)/((x+a)(x+alpha+1))="loge"((9)/(8))` isA. `-2`B. `(1)/(2)`C. `-(1)/(2)`D. 2

Answer» Correct Answer - A
Let I `int_(alpha)^(alpha+1)(dx)/((x+a)(x+alpha1))`
`int_(alpha)^(alpha+1)((x+alpha+1)-(x+alpha))/((x+alpha)(x+alpha+1))`dx
`=int_(alpha)^(alpha+1)((1)/(x+alpha)-(1)/(x+alpha+1)) dx`
`=[log_(e)(x+alpha)-log_(e)(x+alpha+1)]_(alpha)^(alpha+1)`
`=[log_(e)((x+alpha)/(x+alpha+1))]_(alpha)^(alpha+1)`
`="log"_(e)(2alpha+1)/(2alpha+2)-"log"_(e)(2alpha)/(2alpha+1)`
`=log_(e)((2alpha+1)/(2alpha+2)xx(2alpha+1)/(2alpha))="log"_(e)((9)/(8))` (given)
`rArr((2alpha+1)^(2))/(4alpha(alpha+1))=(9)/(8)rArr8 [4alpha+1] = 36 (alpha^(2)+alpha)`
`rArr8alpha^(2)+8alpha+2=9alpha^(2)+9alpha`
`rArralpha^(2)+alpha-2=0`
` rArr(alpha+2)(alpha-1)=0`
`rArralpha=1,-2`
From the options we get `alpha -=2`


Discussion

No Comment Found