1.

A displacement wave is represented by `xi=0.25xx10^(-3)sin(500t=0.025x)` Deduce (i) amplitude (ii) period (iii) angular frequency (iv)wavelength (v) amplitude of particle velocity (vi) amplitude of particle acceleration . `xi`, t and x are in cm, sec, and metre respectively.

Answer» We know that the displacement of a particle in a simple harmonic wave is
`xi=rsin((2pit)/(T)-(2pix)/(lambda))`
Comparing this equation with the equatino
`xi=0.25xx10^(-3)sin(500t-025x)`, We have
(i) amplitude ` r=0.25xx10^(-3)cm`
(ii) `(2pi)/(T)=500 or T=(2pi)/(500)=(pi)/(250)sec`
(iii) Angular frequency,
`omega=(2pi)/(T)=500rad.//sec`
(iv) `(2pi)/(lambda)=-025 or lambda=(2pi)/(0.025) =80pimetres`
(v) Amplitude of particle velocity
`=` max. velocity `=omega r=(2pi)/(T).r`
`=500xx0.25xx10^(-3)=0.125cm//s`
(vi) Amplitude of particle acceleratino
`=` max. acceleration `=omega^(2)r`
`=(500)^(2)xx0.25xx10^(-3)=62.5cm//sec^(2)`


Discussion

No Comment Found

Related InterviewSolutions