Saved Bookmarks
| 1. |
A curve `y=f(x)`passesthrough point `P(1,1)`. The normal to the curve at `P`is a `(y-1)+(x-1)=0`. If the slope of the tangent at any point on thecurve is proportional to the ordinate of the point, then the equation of thecurve is(a)`( b ) (c) y=( d ) e^(( e ) (f) K(( g ) (h) x-1( i ))( j ))( k ) (l)`(m) (b) `( n ) (o) y=( p ) e^(( q ) (r) K e (s))( t ) (u)`(v)(c)`( d ) (e) y=( f ) e^(( g ) (h) K(( i ) (j) x-2( k ))( l ))( m ) (n)`(o) (d) None of these |
| Answer» Correct Answer - `y = e^(a(x-1)), (1+(e^(-a))/(a) - (1)/(2a))` | |