1.

A bag has 10 red balls, 5 green balls and ‘x’ yellow balls. If the probability of drawing 2 red balls from the bag is 13/57 more than the probability of drawing 2 yellow balls then find total balls in the bag?1. 152. 253. 204. 195. 30

Answer» Correct Answer - Option 4 : 19

GIVEN:

⇒ Red balls = 10

⇒ Green balls = 5

⇒Yellow balls = ‘x’

⇒ Total balls in the bag = 15 + x

ASSUMPTION:

Let P be the probability of drawing 2 yellow balls from the bag.

CALCULATION:

Case 1: when drawing 2 red balls from the bag.

10C2/ (15 + x)C2 = P + 13/57      ----(1)

Case 2: when drawing 2 yellow balls from the bag.

  xC2/ (15 + x)C2 = P      ----(2)

Solving eq(1) and eq(2)

⇒ 10C2(15 + x)C2 = xC2(15 + x)C2 + 13/57  

⇒ (10C2 - xC2)/ (15 + x)C2 = 13/57  

⇒ ([90 - (x)(x-1)]/2) / (15 + x)(14 + x)/2 = 13/57  

\(⇒\frac{(90 - {(x)(x-1))} \over 2}{\frac{(15 + x)(14 + x)}{2}} = \frac {13} {57} \)

\(⇒\frac{(90 - {(x)(x-1))} }{(15 + x)(14 + x)} = \frac {13} {57} \)

\(⇒{(90 - {(x)(x-1))} } \times 57= {13} \times {(15 + x)(14 + x)}\)

\(⇒{(90 - {(x)(x-1))} } \times 57= {13} \times {(15 + x)(14 + x)}\)

since options for yellow balls are 0, 10, 4, 15 by subtracting 15 from each option.

So, we get

⇒ x = 4

⇒ Total balls = 15 + x = 19 balls.



Discussion

No Comment Found

Related InterviewSolutions