Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

6551.

If f={(-2, 4), (0, 6), (2, 8)} and g={(-2, -1), (0, 3), (2, 5)}, then ((2f)/(3g)+(3g)/(2f))(0)=

Answer»

`1//12`
`25//12`
`5//12`
`13//12`

ANSWER :B
6552.

In triangle ABc, if A-B=120^(@) and R=8r where Rr have their usual meaning then cosC equals

Answer»

`3//4`
`2//3`
`5//6`
`7//8`

ANSWER :D
6553.

Find the maximum area of the rectangle that can be formed with fixed perimeter 20.

Answer»


ANSWER :25 SQ. UNITS
6554.

Prove that= (sin 5x - 2 sin 3 x + sin x)/( cos 5x - cos x) = tan x

Answer»


ANSWER :`TAN X = R.H.S`
6555.

Check the continuity of the functionn 'f' defined by fx={{:((x^(2)-9)/(x^(2)-2x-3),if, 0 lt x lt 5 and x ne3),(1.5,if,x=3):}

Answer»


ANSWER :CONTINUOUS
6556.

Nuber of distinct solutions of sec theta+ tan theta= sqrt(3), 0 le theta le 3pi,is

Answer»

2
5
4
3

Answer :A
6557.

If sinx + siny + sinz + sinzw =- 4. then the value of sin^(400)x + sin^(300) y + sin^(200) z + sin^(100)w is

Answer»

`sin^(400) x.sin^(300) y.sin^(200) z+sin^(100)W`
`sin.x.siny.sinzxxsinw`
4
3

Answer :C
6558.

sin "" (2pi)/(7) + sin "" (4pi)/(7) + sin "" (8pi)/(7) =

Answer»

`SQRT(7)//2`
`7//2`
`- sqrt(7)//2`
`-7//2`

ANSWER :A
6559.

Expansion of log(sqrt((1+x)/(1-x))) is :

Answer»

`X + x^(3)/3 + x^(5)/5 + ... `
`1+x^(2)/2 +x^(4)/4 + ...`
`1-x + x^(2)/2 -x^(3)/5 + ...`
`x- x^(2)/3 + x^(3)/3 - ...`

Answer :a
6560.

ABCDEF is a regular hexagon. bar(AB)+bar(AC)+bar(AD)+bar(EA)+bar(FA)=

Answer»

`3bar(AB)`
`4bar(AB)`
`bar(AB)`
`2bar(AB)`

ANSWER :B
6561.

If f(x)satisfies the relation f(x+ y) = f ( x) + f( y )for all x, y in R and f(1)= 5 then

Answer»

`F(X)` is an odd function
`f(x)` is an even function
`sum_(r=1)^(m) f(r)=5^(m+1)C_(2)`
`sum_(r=1)^(m) f(r)=(5m(m+2))/(3)`

Answer :A::C
6562.

Planes are drawn parallel to the coordinate planes through the points P(x_(1),y_(1),z_(1)) and Q (x_(2),y_(2),z_(2)) find the length of the edges of the parallopiped.

Answer»


ANSWER :`:. PC=|z_(2)-z_(1)|`
6563.

If a and b are chosen randomly from the set {1,2,3,4} with replacement, then the probability of the real roots of the equation x^(2)+ax+b=0 is:

Answer»

`(3)/(16)`
`(5)/(16)`
`(7)/(16)`
`(11)/(16)`

ANSWER :C
6564.

Express each of the following complex number in the form a+ib: i^(37)xx(1)/(i^(67))

Answer»


ANSWER :`-1+0.i`
6565.

If tan^(2)theta=2tan^(2)phi+1 then the value of cos(2theta)+sin^(2)phi is ………..

Answer»

`-1`
0
1
2

Answer :B
6566.

Let f:(- pi/2, pi/2) rarr R be given by f(x)=(log (sec x + tanx))^(3). Then

Answer»

`F(x)` is an odd function
`f(x)` is an one-one function
`f(x)` is an ONTO function
`f(x)` is an EVEN function

Answer :A::B::C
6567.

Find the sum to indicated number of terms in each of the geometric progressions insqrt7, sqrt(21)3sqrt7 , ........n terms

Answer»


ANSWER :`sqrt7/2(sqrt3+1)(3^(n/2)-1)`
6568.

There exists some positive integer x such that sqrt(x)inR .

Answer»


ANSWER :TRUE STATEMENT
6569.

Statement - I : If |{:(x+1,-3,4),(-5,x+2,2),(4,1,x-6):}|=0 then x=0 Statement - II : If |{:(15-x,11,10),(11-3x,17,16),(7-x,15,13):}|=0 then x=6 Which of the above statement(s) is true ?

Answer»

only I is TRUE
only II is true
Both I and II are true
NEITHER I nor II are true

ANSWER :C
6570.

The shadow of a tower standing on a level plane is found to be 50 mt longer when the suns altitude is 30^(@)then that when it45^(@) then the height of the tower is

Answer»

` 25( SQRT3+ 1) `
` 25( sqrt3-1) `
` 20 (sqrt3+1) `
` 20 ( sqrt3-1) `

ANSWER :A
6571.

If (1)/("log"_(3) pi) + (1)/("log"_(4) pi) gt x, then the greatest integral value of is

Answer»

2
3
`PI`
NONE of these

Answer :A
6572.

The probability that a student will receive A, B, C or D grade are 0.40, 0.50, 0.15 and 0.10respectively. Find the probability that a student will receive (i) B or C grade (ii) At least C grade.

Answer»


ANSWER :(i) 0.60 (II) 0.35
6573.

The points A(1,2),B(3,-4) are two vertices of the rectangle ABCD. The point P(3,8) lies on the CD produced then C=

Answer»

`(33//5, 14//5)`
`(-33//5,14//5)`
`(33//5,-14//5)`
`(-33//5,-14//5)`

ANSWER :C
6574.

In Delta ABC, if r:R:r_1=2:5:12, then A=

Answer»

`45^(@)`
`60^(@)`
`30^(@)`
`90^(@)`

ANSWER :D
6575.

Ifthetalies in the first quadrant and5 tan theta = 4 , " then " (5 sin theta - 3 cos theta )/( sin theta + 2 cos theta )=

Answer»

`5//14`
`3//14`
`1//14`
0

Answer :A
6576.

The value fo a, b and c such that lim_(x to 0)(ax^(x)-b log (1+x)cx.e^(-x))/(x^(2)sinx)=2 are given by

Answer»

`a=3, b=12, C=9`
`a=-3, b=12 c,=9`
`a=3, b=12, c=-9`
`a=-3, b-12=c=-9`

ANSWER :A
6577.

If tan theta = sqrt2-1 then tan (2theta)=1 .

Answer»


ANSWER :TRUE STATEMENT
6578.

If r le s le n, then prove that .^(n)P_(s) is divisible by .^(n)P_(r).

Answer»

Solution :`.^(N)P_(r) = (n!)/((n-r)!)`
`=n (n-1) (n-2)... (n-r+1)`
`.^(n)P_(s) = (n!)/((n-s)!)`
`= n(n-1)(n-2) ...(n-r+1)`
`(n-r) ...(n-s+1) ( :' r le s)`
Now `(.^(n)P_(s))/(.^(n)P_(r)) = (n-r) (n-r-1).......(n-s+1)`
= a positive INTEGER.
`:. .^(n)P_(s)` is DIVIDED by `.^(n)P_(r)` Hence PROVED.
6579.

Simiplify :(sqrt((5+12i)) + sqrt((5-12i)))/(sqrt((5+12i))-sqrt((5-12i)))

Answer»


ANSWER :`-(3)/(2)i`
6580.

Statement-I : The coordinates of a point equidistant from the four point (a,0,0),(0,b,0),(0,0,c),(0,0,0) are (a/4,b/4,c/4) Statement-II : The distance between the origin and the centroid for the tetrahedron where vetrtice are (0,0,0),(a,0,0),(0,b,0),(0,0,c) is (sqrt(a^(2)+b^(2)+c^(2)))/4 Which of the above statementsis correct :

Answer»

Only I
Only II
Both I and II
Neither I nor II

Answer :B
6581.

If A=(1, 1, 1), B=(1, 2, 3), C=(2, -1, 1) be the vertices of a DeltaABC, then the length of the internal bisector of the angle 'A' is

Answer»

`1/2`
`SQRT(3/2)`
`1/4`
2

Answer :B
6582.

Find the point of intersection of the medians of the triangle with vertices (-1, -3, 4), (4, -2,-7), (2, 3, -8).

Answer»


ANSWER :`((5)/(3) , (2)/(3) , (-19)/(3))`
6583.

Find the values of theta lying between 0^(@) and 360^(@) when sin theta=cos317^(@)

Answer»


ANSWER :`47^(@),133^(@)`
6584.

Find equaiton of hyperbola satisfying given conditons Length of the conjugate axis is 7 and passes from (3,-2)

Answer»


ANSWER :`33X^(2) - 36Y^(2) = 441`
6585.

Find the value ofcot(-315^(@))

Answer»


ANSWER :1
6586.

The points whose position vectors are 2bar(i)+3bar(j)+4bar(k), 3bar(i)+4bar(j)+2bar(k) and 4bar(i)+2bar(j)+3bar(k) are the vertices of

Answer»

an ISOSCELES triangle
right ANGLED triangle
equilateral triangle
right angled isosceles triangle

Answer :C
6587.

Let ABC be a triangle with integer sides a,b,c and angle C = 90^(@) The number of triangles with r = 2009is

Answer»

10
12
13
15

Answer :D
6588.

If the line, (x-3)/(2) = (y+2)/(-1) = (z +4)/(3) lies in the plane, lx + my - z =9, then l ^(2) + m ^(2)is equal to

Answer»

18
5
2
26

Answer :C
6589.

Show on a diagram the position of the straight line x"cos"30^(@)+y"sin"30^(@)=2 in relation to the co-ordinate axes, indicating clearly which angle is 30^(@) and which length is 2 units. Find (i) the equation of the straight line parallel to that given line and passing through the point (4, 3) and (ii) the length of the perpendicular from the origin on to this line

Answer»


ANSWER : `2sqrt(3)+3/(2) or 4.96`
6590.

Show on a diagram the position of the straight line x"cos"30^(@)+y"sin"30^(@)=2 in relation to the co-ordinate axes, indicating clearly which angle is 30^(@) and which length is 2 units. Find (i) the equation of the straight line parallel to that given line and passing through the point (4, 3) and (ii) the distance between the two parallel straight lines.

Answer»


ANSWER : `4.96-2=2.96`
6591.

What is the number of terms in the expansion of the following? (4x^(2) + 12 xy+ 9y^(2) )^(9)

Answer»


ANSWER :19
6592.

Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector veca. The vector of the faces containing vertices A, B , C and A, B, D are vecb and vecc, respectively , i.e. vec(AB) xx vec(AC) and vec(AD) xx vec(AB) = vecc the projection of each edge AB and AC on diagonal vector veca is |veca|/3 vector vec(AC) is

Answer»

`1/3 veca+ (vecaxx(vecb-vecc))/|veca|^(2)`
`1/3 veca+ (vecaxx(vecb-vecc))/|veca|^(2) + (3(vecbxxveca))/|veca|^(2)`
`1/3 veca+ (vecaxx(vecb-vecc))/|veca|^(2) -(3(vecbxxveca))/|veca|^(2)`
none of these

Solution :`veca=vec(AP)=vec(AB)+vec(AC)+vec(AD)`
`vec(AB)xxvec(AC)=vecb`
`vec(AD)xxvec(AB)=vecc`
`vec(AB).veca/(|veca|)=|veca|/3 Rightarrowvec(AB).veca= (|veca|^(2))/3`
`vec(AB).veca/(|veca|)=|veca|/3 Rightarrowvec(AC).veca= (|veca|^(2))/3`
` (vec(AB) xx vec(AC))xxveca = vecb xxveca`
`vec(AC)-vec(AB)=3(vecbxxveca)/(|veca|^(2))`
`|veca|^(2)=vec(AB).veca+vec(AC).veca+vec(AD).veca`
`(|veca|^(2))/3=vec(AD).veca`
`(vec(AD)xxvec(AB))xxveca=veccxxveca`
`vec(AB)- vec(AD) = 3 (vecc xx veca)/(|veca|^(2))`
Now from (ii) and (III), we get `vec(AC) and vec(AD)`as
`vec(AC)=1/3veca+ (vecaxx(vecb xx vecc))/(|veca|^(2))+(3(vecbxxveca))/(|veca|^(2))`
` vec(AD)= 1/3veca+ (vecaxx(vecb-vecc))/(|veca|^(2))- (3(vec cxxveca))/(|veca|^(2))`
6593.

Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector veca. The vector of the faces containing vertices A, B , C and A, B, D are vecb and vecc, respectively , i.e. vec(AB) xx vec(AC)=vecb and vec(AD) xx vec(AB) = vecc the projection of each edge AB and AC on diagonal vector veca is |veca|/3 vector vec(AB) is

Answer»

`1/3 VECA+ (vecaxx(vecb-VECC))/|veca|^(2)`
`1/3 veca+ (vecaxx(vecb-vecc))/|veca|^(2) + (3(vecbxxveca))/|veca|^(2)`
`1/3 veca+ (vecaxx(vecb-vecc))/|veca|^(2) - (3(vecbxxveca))/|veca|^(2)`
NONE of these

Solution :`veca=vec(AB)+vec(AC)+vec(AD)`
`vec(AB)xxvec(AC)=vecb`
`vec(AD)xxvec(AB)=vecc`
`vec(AB).veca/(|veca|)=|veca|/3 Rightarrowvec(AB).veca= (|veca|^(2))/3`
`vec(AB).veca/(|veca|)=|veca|/3 Rightarrowvec(AC).veca= (|veca|^(2))/3`
` (vec(AB) xx vec(AC))xxveca = vecb xxveca`
`vec(AC)-vec(AB)=3(vecbxxveca)/(|veca|^(2))`
`|veca|^(2)=vec(AB).veca+vec(AC).veca+vec(AD).veca`
`(|veca|^(2))/3=vec(AD).veca`
`(vec(AD)xxvec(AB))xxveca=veccxxveca`
`vec(AB)- vec(AD) = 3 (vecc xx veca)/(|veca|^(2))`
Now from (ii) and (III), we get `vec(AC) and vec(AD)`as
`vec(AC)=1/3veca+ (vecaxx(vecb xx vecc))/(|veca|^(2))+(3(vecbxxveca))/(|veca|^(2))`
` vec(AD)= 1/3veca+ (vecaxx(vecb-vecc))/(|veca|^(2))- (3(vec cxxveca))/(|veca|^(2))`
6594.

Ab, AC and AD are three adjacent edges of a parallelpiped. The diagonal of the praallelepiped passing through A and direqcted away from it is vector veca. The vector of the faces containing vertices A, B , C and A, B, D are vecb and vecc, respectively , i.e. vec(AB) xx vec(AC) and vec(AD) xx vec(AB) = vecc the projection of each edge AB and AC on diagonal vector veca is |veca|/3 vector vec(AD) is

Answer»

`1/3 veca+ (vecaxx(VECB-VECC))/|veca|^(2)`
`1/3 veca+ (vecaxx(vecb-vecc))/|veca|^(2) + (3(vecbxxveca))/|veca|^(2)`
`1/3 veca+ (vecaxx(vecb-vecc))/|veca|^(2) -(3(vecbxxveca))/|veca|^(2)`
none of these

Solution :`veca=vec(AP)=vec(AB)+vec(AC)+vec(AD)`
`vec(AB)xxvec(AC)=vecb`
`vec(AD)xxvec(AB)=vecc`
`vec(AB).veca/(|veca|)=|veca|/3 Rightarrowvec(AB).veca= (|veca|^(2))/3`
`vec(AB).veca/(|veca|)=|veca|/3 Rightarrowvec(AC).veca= (|veca|^(2))/3`
` (vec(AB) XX vec(AC))xxveca = vecb xxveca`
`vec(AC)-vec(AB)=3(vecbxxveca)/(|veca|^(2))`
`|veca|^(2)=vec(AB).veca+vec(AC).veca+vec(AD).veca`
`(|veca|^(2))/3=vec(AD).veca`
`(vec(AD)xxvec(AB))xxveca=veccxxveca`
`vec(AB)- vec(AD) = 3 (vecc xx veca)/(|veca|^(2))`
Now from (ii) and (iii), we get `vec(AC) and vec(AD)`as
`vec(AC)=1/3veca+ (vecaxx(vecb xx vecc))/(|veca|^(2))+(3(vecbxxveca))/(|veca|^(2))`
` vec(AD)= 1/3veca+ (vecaxx(vecb-vecc))/(|veca|^(2))- (3(vec cxxveca))/(|veca|^(2))`
6595.

Assume that an object is launched upward at 980m/seclis position would be given by s=-4.9t^2+980. Find the maximum height attained by the object

Answer»


ANSWER :49000 UNITS
6596.

Find the derivative of w.r.to x (ax + b ) ^(n)

Answer»


ANSWER :`NA (AX +B) ^(n-1)`
6597.

1+ (1+3) + (1+3+ 5) + ….n brackets =

Answer»

`(n (n+1) (n+2) )/( 6) `
`(n (n +1) (3n^(2) + 23n + 46))/( 12)`
`(n(27n^(3) + 90n^(2) + 45n- 50))/( 4)`
`(n (n+1) (2n +1) )/( 6)`

ANSWER :D
6598.

Find an approximation of (0.99)^5 using the first three terms of its expansion.

Answer»


ANSWER :0.951
6599.

If tan(picostheta)=cot(pisintheta),then prove that cos(theta-(pi)/(4))=pm(1)/(2sqrt(2))

Answer»

`1//2`
`1//sqrt(2)`
`pm1//2sqrt(2)`
`1//3sqrt(2)`

ANSWER :C
6600.

The value of 'a' for which the function f(x) =a sin x+1/3 sin 3x has an extremum at x=pi//3 is

Answer»

1
`-1
0
2

Answer :D