Explore topic-wise InterviewSolutions in .

This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.

2451.

Palagom

Answer»
2452.

If radius of circle is 6cm and length of arc is12 cm.find the area of sector.

Answer» You need to mention which type of triangle it is
Very easy yrr ...36cm2 {area of sector}
2453.

Tan A+secA-1. Cos A---------------------- = -----------TanA - secA+1. 1-sinA

Answer» Convert all values in sin and cos At last see for any sort of multiplication
2454.

Find the hcf of 81 and 237 and express it as a linear combination of 81 237

Answer» Since, 237 > 81On applying Euclid\'s division algorithm, we get237 = 81 {tex}\\times{/tex}\xa02 + 75 ..........(i)81 = 75 {tex}\\times{/tex}\xa01 + 6 ..........(ii)75 = 6 {tex}\\times{/tex}\xa012 + 3 .........(iii)6 = 3 {tex}\\times{/tex}\xa02 + 0 .............(iv)Hence, HCF (81,237) = 3.In order to write 3 in the form of 81x + 237y,Now,{tex}\\style{font-family:Arial}{\\begin{array}{l}3=75-6\\times12(\\;from(iii))\\\\=75-(81-75\\times1)\\times12\\\\=75-(81\\times12-75\\times12)\\\\=75-81\\times12+75\\times12\\\\=75(1+12)-81\\times12\\\\=75\\times13-81\\times12\\\\=13\\times(237-81\\times2)-81\\times12\\;(\\;Substuting\\;75\\;from(i))\\\\=13\\times237-13\\times81\\times2-81\\times12\\\\=237\\times13-81\\times(26+12)\\\\=81(-38)+237\\times13\\\\=81x+237y\\end{array}}{/tex}Hence, x = -38 and y = 13\xa0
2455.

2×2 what

Answer» 4
2456.

4x+3y-6z/3x+7

Answer»
2457.

Integration of greatest integral function

Answer»
2458.

Hey guys ....can anyone explain me example 3 chapter 10 Ncert?

Answer»
2459.

Hello ishi .. Akhir tm aa hi gyi ..

Answer»
2460.

Time table of cbse board of class10

Answer»
2461.

Prove of BPT Theorem

Answer» Given :\xa0In {tex}\\triangle A B C{/tex}, DE || BC and intersects AB in D and AC in E.\xa0Prove that :\xa0{tex}\\frac{AD}{DB} = \\frac{AE}{EC}{/tex}Construction:\xa0Join BE, CD and draw EF {tex}\\perp{/tex} BA and DG {tex}\\perp{/tex} CA. Now from the given figure we have,EF {tex}\\perp{/tex} BA (Construction)EF is the height of ∆ADE and ∆DBE (Definition of perpendicular)Area({tex}\\triangle{/tex}ADE) ={tex}\\frac{AD.EF}{2}{/tex} .....(1)Area({tex}\\triangle{/tex}DBE) = {tex}\\frac{DB.EF}{2}{/tex} ....(2)Divide the two equations we have{tex}\\frac{Area \\triangle ADE}{Area \\triangle DBE} = \\frac{AD}{DB}{/tex} .....(3){tex}\\frac{Area \\triangle ADE}{Area \\triangle DEC} = \\frac{AE}{EC}{/tex} .....(4)Therefore, {tex}\\triangle \\mathrm{DBE} \\sim \\triangle \\mathrm{DEC}{/tex} (Both the ∆s are on the same base and\xa0between the same || lines).....(5)Area({tex}\\triangle{/tex}DBE) = Area({tex}\\triangle{/tex}DEC) (If the two triangles are similar their\xa0areas are equal){tex}\\frac{AD}{DB} = \\frac{AE}{EC}{/tex}\xa0[from equation 3,4 and 5]Hence proved.
2462.

(a+b)²x²-4abx-(a-b)²=0 Find by factarisation

Answer» We have,{tex}(a + b)^2x^2 - 4abx - (a - b)^2 = 0{/tex}In order to factorize {tex}(a + b)^2x^2 - 4abx - (a - b)^2{/tex}, we have to find two numbers \'l\' and \'m\' such that.l + m = -4ab and lm = -(a + b)2(a - b)2Clearly, (a - b)2 + [-(a + b)2] = -4ab and\xa0lm = -(a + b)2(a - b)2l = (a - b)2 and m = -(a + b)2Now,{tex}(a + b)^2x^2 - 4abx - (a - b)^2 = 0{/tex}{tex}\\Rightarrow{/tex}{tex}(a + b)^2x^2 - (a + b)^2x + (a - b)^2x - (a - b)^2 = 0{/tex}{tex}\\Rightarrow{/tex} (a + b)2x [x - 1] + (a - b)2[x - 1] = 0{tex}\\Rightarrow{/tex} (x - 1)[(a + b)2x + (a - b)2] = 0{tex}\\Rightarrow{/tex} x - 1 = 0 or (a + b)2x + (a - b)2 = 0{tex}\\Rightarrow{/tex} x = 1 or {tex}x = - \\frac{{{{(a - b)}^2}}}{{{{(a + b)}^2}}}{/tex}
2463.

Some plz give me some tips tommorow is my sst preboard

Answer»
2464.

find zeroes of polynomial p2-19p/6-7/6 ?

Answer»
2465.

Hard easy

Answer»
2466.

If cos A=2/5,find the value of 4+4 tan×tan A

Answer» Ans is 25
2467.

If alpha and beta are zeros of polynomial ax^2 + bx + c = 0 then evaluate alpha^2 -beta^2

Answer» U\'ll get 16b^4(1-ca)/a^4
(Alpha sq -beta sq)^2
2468.

In an AP, the sum of n terms is 1/2 (5n^2+3n).Find its 40th term

Answer»
2469.

Vghv

Answer»
2470.

What is tan 60

Answer» tan 60 =√3
root 3
Root 3
2471.

Fulform of mathmatics

Answer» The is no definite full form of math.....but people make it\'s full form to visualize about it......
It has no real full form
2472.

How to study maths

Answer» Don\'t study maths, practice maths
Study maths like maths
2473.

263575

Answer»
2474.

7 easy chapter??

Answer»
2475.

In the adjoining figure ABCD is a trapezium

Answer»
2476.

Probability of a sure event is?

Answer» 1
Is it 1 ?
1
2477.

Is ur app really help me for getting good results in board exam

Answer» Ya y not
2478.

a/x-b + b/x-a = 2

Answer» x=a+b or x=(a+b)/2
2479.

some important tips for fiit jee ftre examination

Answer»
2480.

In a right triangle prove that 1+tan^2theta =sec^2theta

Answer»
2481.

If secA+tanA=m & secA-tanA=n.find the value of root nm

Answer»
2482.

Pq parallel to bc and ap:pb =1:2. Find ar (apq)/ar (abc).

Answer»
2483.

COT a + Tan B/cot B +tan a =CotA +TanB

Answer» We have,L.H.S{tex} = \\frac{{\\cot A + \\tan B}}{{\\cot B + \\tan A}}{/tex}{tex} = \\frac{{\\frac{{\\cos A}}{{\\sin A}}}}{{\\frac{{\\cos B}}{{\\sin B}}}} + \\frac{{\\frac{{\\sin B}}{{\\cos B}}}}{{\\frac{{\\sin A}}{{\\cos A}}}}{/tex}{tex} = \\frac{{\\frac{{(\\cos A\\cos B + \\sin A\\sin B}}{{\\sin A\\cos B}}}}{{\\frac{{(\\cos A\\cos B + \\sin A\\sin B)}}{{\\sin B\\cos A}}}}{/tex}{tex} = \\frac{{(\\cos A\\cos B + \\sin A\\sin B)}}{{\\sin A\\cos B}} \\times \\frac{{\\sin B\\cos A}}{{(\\cos A\\cos B + \\sin A\\sin B)}}{/tex}{tex} = \\frac{{\\cos A}}{{\\sin A}} \\cdot \\frac{{\\sin B}}{{\\cos B}}{/tex}{tex} = \\cot A \\cdot \\tan B = R.H.S{/tex}therefore,\xa0{tex}\\frac{{\\cot A + \\tan B}}{{\\cot B + \\tan A}} = \\cot A \\cdot \\tan B{/tex}Hence proved.
2484.

The distance between the point A(0,6) B(0,2)is

Answer» 4
2485.

equation 3x*-k

Answer»
2486.

of real no chapter

Answer»
2487.

1×1000

Answer» 1000
2488.

? ABC is circumscribing a circle. Find the length of BC

Answer» Given,{tex}AR = 4 \\ cm .{/tex}Also,\xa0{tex}AR = AQ{/tex}\xa0{tex}\\Rightarrow{/tex}\xa0{tex}AQ = 4 cm\xa0{/tex}Now,\xa0{tex}QC = AC - AQ{/tex}{tex}= 11 cm - 4 cm = 7 cm{/tex}\xa0...(i)Also,\xa0{tex}BP = BR{/tex}{tex}\\therefore{/tex}\xa0BP = 3 cm and PC = QC{tex}\\therefore{/tex}\xa0PC = 7 cm [From (i)]\xa0{tex}BC = BP + PC \\\\ = 3 cm + 7 cm \\\\ = 10 cm{/tex}
2489.

In an ap 6th term is half the 4th term

Answer» a6=a+5d or x÷2=a+5da4=a+3d or x=a+3dThen solve it by elemination
2490.

Solve for x4^x - 3 ×2 ^x - 128=0

Answer»
2491.

Formula of distance

Answer» Distance = Speed ---------- Time
speed/ time
2492.

What is the polynomial

Answer»
2493.

QT and RS are medians of a trianglePQR right angled at P. Prove that 4(QT2+RS2)=5OR2

Answer»
2494.

how many terms of the AP 9, 17,25,.......must be taken to give a sum of 636

Answer»
2495.

If tanA=a/x,find the value of x/√a^2+x^2.

Answer» CosA
2496.

If √3sin◆(theeta)=cos◆Find the value of3cos square◆+2÷3cos◆+2

Answer»
2497.

Prove that Vn-1 + Vn-1 is a irrational no.

Answer»
2498.

Divide

Answer» Ok
Sorry trigonometry identities
2499.

what is the value of sin tita

Answer» You r wrong riya usne sin thita ka value pucha hai
The value of sin tita always lies between 0 and one
2500.

If the points (x,y) is equidistant from the points (a-b, a+b) and (-a-b, a+b), prove that x-a=0

Answer»