This section includes InterviewSolutions, each offering curated multiple-choice questions to sharpen your knowledge and support exam preparation. Choose a topic below to get started.
| 11501. |
Solve the given inequality and show the graph of the solution on number line: 3x – 2 < 2x +1 |
|
Answer» Solve the given inequality and show the graph of the solution on number line: 3x – 2 < 2x +1 |
|
| 11502. |
V is product of first 41 natural numbers. A = V+1. The number of primes among A+1, A+2, A+3, A+4 ............... A+39, A+40 is: (A) 1 (B) 2 (C) 3 (D) 0 |
|
Answer» V is product of first 41 natural numbers. A = V+1. The number of primes among A+1, A+2, A+3, A+4 ............... A+39, A+40 is: (A) 1 (B) 2 (C) 3 (D) 0 |
|
| 11503. |
A conical pit of top diameter 3.5 m is 12 m deep. What is its capacity in kilolitres?[Assume π=227] |
|
Answer» A conical pit of top diameter 3.5 m is 12 m deep. What is its capacity in kilolitres? [Assume π=227] |
|
| 11504. |
Choose the correct less than type ogive curve for the given data. Class Frequency 5−10 310−15615−20920−251225−30830−3510 |
|
Answer» Choose the correct less than type ogive curve for the given data. Class Frequency 5−10 310−15615−20920−251225−30830−3510 |
|
| 11505. |
Solve for x and y:5x+y-2x-y=-115x+y+7x-y=10 |
|
Answer» Solve for x and y: |
|
| 11506. |
If Alpha and Beta are the zeros of ax^2+bx+c, find the value of Alpha^3+Beta^2 |
| Answer» If Alpha and Beta are the zeros of ax^2+bx+c, find the value of Alpha^3+Beta^2 | |
| 11507. |
A metal sheet 27 cm long, 8 cm broad and 1 cm thick is melted into a cube. The side of the cube is (a) 6 cm (b) 8 cm (c) 23 cm (d) 24 cm |
|
Answer» A metal sheet 27 cm long, 8 cm broad and 1 cm thick is melted into a cube. The side of the cube is (a) 6 cm (b) 8 cm (c) 23 cm (d) 24 cm |
|
| 11508. |
Pass entries in the books of Krishnan of Bengaluru (Karnataka) in the following cases: I Purchased goods from Karunakaran of Chennai for ₹ 1,00,000. (IGST 18%) II Sold goods to Ganeshan of Bengaluru for ₹ 1,50,000. (CGST 6% and SGST 6%) III Sold goods to S. Nair of Kerala for ₹ 2,60,000. (IGST 18%) IV Purchased a Motor-bike for ₹ 80,000 from Bajaj Ltd. against cheque. (CGST 9% and SGST 9%) V Paid rent ₹ 30,000 by cheque. (CGST 6% and SGST 6%) VI Purchased goods from Ram Mohan Rai of Bengaluru for ₹ 2,00,000. (CGST 6% and SGST 6%) VII Paid insurance premium ₹ 10,000 by cheque. (CGST 9% and SGST 9%) VIII Received commission ₹ 20,000 by cheque which is deposited into bank. (CGST 9% and SGST 9%) IX Payment made of balance amount of GST. |
||||||||||||||||||||
Answer» Pass entries in the books of Krishnan of Bengaluru (Karnataka) in the following cases:
|
|||||||||||||||||||||
| 11509. |
If m times mth term of an A.P. is equal to n times its nth term, show that the (m + n) term of the A.P. is zero. [3 MARKS] |
|
Answer» If m times mth term of an A.P. is equal to n times its nth term, show that the (m + n) term of the A.P. is zero. [3 MARKS] |
|
| 11510. |
The lock of a suitcase is a 3 digit even number. The number of favourable outcomes for units place is ____.5 |
Answer» The lock of a suitcase is a 3 digit even number. The number of favourable outcomes for units place is ____.
|
|
| 11511. |
A wooden toy rocket is in the shape of a cone mounted on a cylinder, as shown in Fig. The height of the entire rocket is 26 cm, while the height of the conical part is 6 cm. The base of the conical portion has a diameter of 5 cm, while the base diameter of the cylindrical portion is 3 cm. If the conical portion is to be painted orange and the cylindrical portion yellow, find the area of the rocket painted with each of these colours. (Take π=3.14) [4 MARKS] |
|
Answer» A wooden toy rocket is in the shape of a cone mounted on a cylinder, as shown in Fig. The height of the entire rocket is 26 cm, while the height of the conical part is 6 cm. The base of the conical portion has a diameter of 5 cm, while the base diameter of the cylindrical portion is 3 cm. If the conical portion is to be painted orange and the cylindrical portion yellow, find the area of the rocket painted with each of these colours. (Take π=3.14) [4 MARKS] |
|
| 11512. |
Using the properties of proportion, solve the following equation for x.x3+3x3x2+1=34191 |
|
Answer» Using the properties of proportion, solve the following equation for x. x3+3x3x2+1=34191 |
|
| 11513. |
The daily expenditure of 100 families are given below. Calculate f1 and f2 if the mean daily expenditure is ₹188. Expenditure (in ₹) 140−160 160−180 180−200 200−220 220−240 Number of families 5 25 f1 f2 5 |
||||||||||||
Answer» The daily expenditure of 100 families are given below. Calculate f1 and f2 if the mean daily expenditure is ₹188.
|
|||||||||||||
| 11514. |
Product of two consecutive natural numbers is 56. Find the smaller number.7 |
Answer» Product of two consecutive natural numbers is 56. Find the smaller number.
|
|
| 11515. |
The ratio in which the line segment joining the points A(1,–7) and B(6,4) is divided by X-axis is |
|
Answer» The ratio in which the line segment joining the points A(1,–7) and B(6,4) is divided by X-axis is |
|
| 11516. |
Find the area of a quadrant of a circle whose circumference is 44 cm. [CBSE 2011] |
| Answer» Find the area of a quadrant of a circle whose circumference is 44 cm. [CBSE 2011] | |
| 11517. |
Show that the point (x,√(1−x2) is at a distance of 1 unit from the origin . |
|
Answer» Show that the point (x,√(1−x2) is at a distance of 1 unit from the origin . |
|
| 11518. |
The ratio of Current Assets (Rs. 3,00,000) to Current Liabilities is 2.4 : 1. The accountant of this firm is interested in maintaining a current ratio of 2 : 1 by acquiring some Current Assets on Credit. You are required to suggest him the amount of current assets which be acquired for his purpose. |
|
Answer» The ratio of Current Assets (Rs. 3,00,000) to Current Liabilities is 2.4 : 1. The accountant of this firm is interested in maintaining a current ratio of 2 : 1 by acquiring some Current Assets on Credit. You are required to suggest him the amount of current assets which be acquired for his purpose. |
|
| 11519. |
Which of the following represents an empirical relationship between Median, Mode and Mean? |
|
Answer» Which of the following represents an empirical relationship between Median, Mode and Mean? |
|
| 11520. |
The cost of 2 kg of apples and 1 kg of grapes on a day was found to be Rs 160. After a month, the cost of 4 kg of apples and 2 kg of grapes is Rs 300. Represent the situation algebraically and geometrically. |
|
Answer» The cost of 2 kg of apples and 1 kg of grapes on a day was found to be Rs 160. After a month, the cost of 4 kg of apples and 2 kg of grapes is Rs 300. Represent the situation algebraically and geometrically. |
|
| 11521. |
Question 2 (i) Find a quadratic polynomial each with the given numbers as the sum and product of its zeroes respectively. 14,−1 |
|
Answer» Question 2 (i) 14,−1 |
|
| 11522. |
Draw a circle with the help of a bangle. Take a point outside the circle. Construct the pair of tangents from this point to the circle. |
|
Answer» Draw a circle with the help of a bangle. Take a point outside the circle. Construct the pair of tangents from this point to the circle. |
|
| 11523. |
Draw triangle ABC, in which BC = 8 cm, AC = 7 cm and AB = 6 cm with A, B and C as centre. Draw circles of radii 2.5 cm, 3.5 cm and 4.5 cm respectively and show that these circles touch in pairs |
|
Answer» Draw triangle ABC, in which BC = 8 cm, AC = 7 cm and AB = 6 cm with A, B and C as centre. Draw circles of radii 2.5 cm, 3.5 cm and 4.5 cm respectively and show that these circles touch in pairs |
|
| 11524. |
What is the solution of the equation 3x+7y=30 if x=y? |
|
Answer» What is the solution of the equation 3x+7y=30 if x=y? |
|
| 11525. |
what are the elements uun,uut,etc. and why are they named so? |
| Answer» what are the elements uun,uut,etc. and why are they named so? | |
| 11526. |
The line segment AB was divided in the ratio 4:7 by taking 2 rays. The number of arcs to be made on the ray AX is ___ |
|
Answer» The line segment AB was divided in the ratio 4:7 by taking 2 rays. The number of arcs to be made on the ray AX is |
|
| 11527. |
In Fig . 10.69, the tangent at a point C of a circle and a diameter AB when extended intersect at P . If ∠PCA =1100, find ∠CBA. [Hint: Join CO.]figure |
|
Answer» In Fig . 10.69, the tangent at a point C of a circle and a diameter AB when extended intersect at P . If PCA =1100, find CBA. [Hint: Join CO.] figure |
|
| 11528. |
The train covers a distance of 600km at 6km/hr . Had the speed been (x+20)km/hr more , the time taken to cover the distance would have been reduced by 5 hours . Find x . |
| Answer» The train covers a distance of 600km at 6km/hr . Had the speed been (x+20)km/hr more , the time taken to cover the distance would have been reduced by 5 hours . Find x . | |
| 11529. |
{ 2.) A sphere of radius }R and made of material of relative }}{ density }s has a concentric cavity of radius }r . It just }} floats when placed in a tank full of water. The value }{ of the ratio }R/r will be |
| Answer» { 2.) A sphere of radius }R and made of material of relative }}{ density }s has a concentric cavity of radius }r . It just }} floats when placed in a tank full of water. The value }{ of the ratio }R/r will be | |
| 11530. |
Mark the correct alternative in each of the following:If two different dice are rolled together, the probability of getting an even number on both dice is(a) 136 (b) 12 (c) 16 (d) 14 [CBSE 2014] |
|
Answer» Mark the correct alternative in each of the following: If two different dice are rolled together, the probability of getting an even number on both dice is (a) (b) (c) (d) [CBSE 2014] |
|
| 11531. |
The value of Cos(tan^-1(tan2)) is |
| Answer» The value of Cos(tan^-1(tan2)) is | |
| 11532. |
Find the sum of all natural numbers between 200 and 1502 which are exactly divisible by 3. |
|
Answer» Find the sum of all natural numbers between 200 and 1502 which are exactly divisible by 3. |
|
| 11533. |
The rain water from a roof of dimensions 22 m×20 m drains into a cylindrical vessel having diameter of base 2 m and height 3.5 m If the rain water collected from the roof just fills the cylindrical vessel, then find the rain fall in cm. |
|
Answer» The rain water from a roof of dimensions 22 m×20 m drains into a cylindrical vessel having diameter of base 2 m and height 3.5 m If the rain water collected from the roof just fills the cylindrical vessel, then find the rain fall in cm. |
|
| 11534. |
Question 10In any triangle ABC, if the angle bisector of ∠A and perpendicular bisector of BC intersect, prove that they intersect on the circum circle of the triangle ABC. |
|
Answer» Question 10 In any triangle ABC, if the angle bisector of ∠A and perpendicular bisector of BC intersect, prove that they intersect on the circum circle of the triangle ABC. |
|
| 11535. |
The marks obtained out of 50, by 102 students in a Physics test are given in the frequency table below: Marks (x) : 15 20 22 24 15 30 33 38 45 Frequency (f) : 5 8 11 20 23 18 13 3 1 Find the average number of marks. |
|
Answer» The marks obtained out of 50, by 102 students in a Physics test are given in the frequency table below: |
|
| 11536. |
In the given figure, ABCD is a cyclic quadrilateral, OB is the radius, PB is the tangent at point B and ∠OBC=30∘. AOC is a straight line passing through the centre O. Then, the value of x is: |
|
Answer»
|
|
| 11537. |
Write the answer of each of the following questions:(i) What is the name of horizontal and the vertical lines drawn to determine the position of any point in the Cartesian plane?(ii) Write the name of the point where x-axis and y-axis intersect. |
|
Answer» Write the answer of each of the following questions: (i) What is the name of horizontal and the vertical lines drawn to determine the position of any point in the Cartesian plane? (ii) Write the name of the point where x-axis and y-axis intersect. |
|
| 11538. |
In the given figure, find the length of side AB. |
|
Answer» In the given figure, find the length of side AB.
|
|
| 11539. |
Purse I contains 4 copper coins and 3 silver coins and purse II contains 6 copper coins and 4 silver coins. If a purse is chosen randomly and a coin is drawn from it, then the probability that this drawn coin is copper, is |
|
Answer» Purse I contains 4 copper coins and 3 silver coins and purse II contains 6 copper coins and 4 silver coins. If a purse is chosen randomly and a coin is drawn from it, then the probability that this drawn coin is copper, is |
|
| 11540. |
In the figure a small square is inserted inside the bigger square. The area of the shaded region of the square is__ sq.cm. |
|
Answer» In the figure a small square is inserted inside the bigger square. The area of the shaded region of the square is |
|
| 11541. |
If two circles with radius a cm and b cm meet externally., then the distance between their centres is equal to ______ cm. |
|
Answer» If two circles with radius a cm and b cm meet externally., then the distance between their centres is equal to ______ cm. |
|
| 11542. |
The probability of getting a sum of 13 ,when two dice are thrown simultaneously is___ |
|
Answer» The probability of getting a sum of 13 ,when two dice are thrown simultaneously is |
|
| 11543. |
The L.C.M of two terms 2ab and 6ac2 is 6abc2, find their H.C.F. |
|
Answer» The L.C.M of two terms 2ab and 6ac2 is 6abc2, find their H.C.F. |
|
| 11544. |
The radii of the ends of a frustum of a cone 45 cm high are 28 cm and 7 cm. Find its volume, the curved surface area and the total suface area (Take π= 227)) |
|
Answer» The radii of the ends of a frustum of a cone 45 cm high are 28 cm and 7 cm. Find its volume, the curved surface area and the total suface area (Take π= 227)) |
|
| 11545. |
A vertical pole of 30 m is fixed on a tower. From a point on the level ground, the angles of elevation of the top and bottom of the pole is 60∘ and 45∘. Find the height of the tower. |
|
Answer» A vertical pole of 30 m is fixed on a tower. From a point on the level ground, the angles of elevation of the top and bottom of the pole is 60∘ and 45∘. Find the height of the tower.
|
|
| 11546. |
Find the roots of the quadratic equation −x2+7x−10=0 using the quadratic formula. |
|
Answer» Find the roots of the quadratic equation −x2+7x−10=0 using the quadratic formula. |
|
| 11547. |
A particle is oscillating according to the equation x=7cos0.5pit where t is in second .The point moves from the position of equlibrium to maximum displacement in tim |
| Answer» A particle is oscillating according to the equation x=7cos0.5pit where t is in second .The point moves from the position of equlibrium to maximum displacement in tim | |
| 11548. |
If f(x)=x2−1, then find fof. |
|
Answer» If f(x)=x2−1, then find fof. |
|
| 11549. |
From a window (h metres high above the ground) of a house in a street, the angles of elevation and depression of the top and the foot of another house on the opposite side of the street are θ and ϕ respectively. Find the height of the opposite house. |
|
Answer» From a window (h metres high above the ground) of a house in a street, the angles of elevation and depression of the top and the foot of another house on the opposite side of the street are θ and ϕ respectively. Find the height of the opposite house. |
|
| 11550. |
Write down the decimal expansions of : 3550 |
|
Answer» Write down the decimal expansions of : 3550 |
|