Saved Bookmarks
| 1. |
यदि (If) `y=e^(tanx)`, सिद्ध करें कि (prove that) `cos^(2)x(d^(2)y)/(dx^(2))-(1+sin2x)(dy)/(dx)=0` |
|
Answer» दिया है, `y=e^(tanx)` `:." "logy=tanx" "...(1)` `:." "(1)/(y)(dy)/(dx)=sec^(2)x" या "(dy)/(dx)=y sec^(2)x" "...(2)` या `" "cos^(2)x(dy)/(dx)=y" "...(3)` पुन: x के सापेक्ष अवकलित (Differentiate) करने पर, हमें मिलता है `cos^(2)x(d^(2)y)/(dx^(2))-2cosxsinx(dy)/(dx)=(dy)/(dx)` या `" "cos^(2)x(d^(2)y)/(dx^(2))-(1+sin2x)(dy)/(dx)=0` |
|