Saved Bookmarks
| 1. |
यदि (If)`x=a(theta-sin theta),y=a(1-cos theta)` तो `(dy)/(dx)` निकालें साथ ही `(d^(2)y)/(dx^(2))` भी निकालें | |
|
Answer» `(dx)/(d theta)=a(1-cos theta)" "...(1)` और `" "(dy)/(d theta)=a sin theta" "...(2)` अब `(dy)/(dx)=(dy//d theta)/(dx//d theta)=(a sin theta)/(a(1-cos theta))=(2 sin""(theta)/(2)cos""(theta)/(2))/(2 sin^(2)""(theta)/(2))=cot""(theta)/(2)" "...(3)` दोनों तरफ x के सापेक्ष अवकलित (differentiate) करने पर हमें मिलता है, `(d^(2)y)/(dx^(2))=(d)/(dx)(cot""(theta)/(2))=(d)/(d((theta)/(2)))(cot""(theta)/(2)).(d((theta)/(2)))/(dx)` `=-"cosec"^(2)(theta)/(2).(1)/(2).(d theta)/(dx)` `=-(1)/(2)"cosec"^(2)(theta)/(2).(1)/(a(1-costheta))" "[(1)" से"]` `=-(1)/(2)"cosec"^(2)(theta)/(2).(1)/(2asin^(2)""(theta)/(2))=-(1)/(4a)"cosec"^(4)(theta)/(2)` |
|