Saved Bookmarks
| 1. |
यदि A,B, a,b स्वैच अचर हों तो निम्नलिखित वक्रों के कुल का अवकल समीकरण ज्ञात कीजिये| (i) `Ax^(2) + By^(2) =1`, (ii) `xy =Ae^(x) +Be^(-x) +x^(2)` (iii) `y =Ae^(2x) +Be^(-3x)`, (iv) `x^(2)+y^(2)=a^(2)` , (v) `y =ae^(3x) + be^(-2x)`, (vi) `x/a + y/b =1` (vii) `y=e^(2x) (a+bx)`, (viii) `y=a cosx nx + b sin nx` |
|
Answer» (i) `xy(d^(2)y)/(dx^(2)) + x((dy)/(dx))^(2)-y(dy)/(dx)=0` , (ii) `x(d^(2)y)/(dx^(2)) + 2(dy)/(dx) = xy-x^(2) +2` (iii) `(d^(2)y)/(dx^(2)) + (dy)/(dx) -6y =0`, (iv) `x+y(dy)/(dx) =0` (iv) `x+y(dy)/(dx) =0` (v) `(d^(2)y)/(dx^(2)) -(dy)/(dx)-6y=0` , (vi) `(d^(2)y)/(dx^(2))=0` (vii) `(d^(2)y)/(dx^(2)) -4(dy)/(dx)+4y=0` , (viii) `(d^(2)y)/(dx^(2)) + n^(2)y=0` |
|