Saved Bookmarks
| 1. |
Write the negation of the following statement using the rule of negation ( p ⇒ q ) and r. |
|
Answer» Given statement is (P implies q ) and r i.e., (p ⇒ q) ∧ r or (~ p ∨ q) ∧ r. (\(\because\) p ⇒ q ≡ ~ p ∧ q) Now, the negation of (p ⇒ q) ∧ r is ~((~p ∨ q) ∧ r) or ~ (~p ∨ q) ∨~ r (\(\because\) ~ (p ∧ q) ≡ ~ p ∨ ~ q) or (~ (~ p) ∧ ~ q) ∨ (~ r) (\(\because\) ~(p ∨ q) ≡ ~p ∧ ~ q) or (p ∧ ~p) ∨ ~r (\(\because\) ~ (~p) ≡ p) or p ∧ ~q ∨ ~r or p ∧ ~(q ∧ r) |
|