| 1. |
Without using trigonometric tables, prove that(i) tan 5\(^\circ\) tan 25\(^\circ\)tan30\(^\circ\)tan 65\(^\circ\) tan 85\(^\circ\)= 1(ii) cot12\(^\circ\) cot 38\(^\circ\)cot 52\(^\circ\) cot 60\(^\circ\)cot78\(^\circ\)= \(\frac{1}{\sqrt3}\)(iii) cos 15\(^\circ\) cos 35\(^\circ\) cosec55\(^\circ\) cos 60\(^\circ\)cosec 75\(^\circ\) = \(\frac{1}2\)(iv) cos1\(^\circ\) cos 2\(^\circ\) cos3\(^\circ\)......cos 180\(^\circ\)= 0(v) \((\cfrac{sin49^\circ}{cos41^\circ})\) + \((\cfrac{cos41^\circ}{sin49^\circ})\)= 2 |
|
Answer» (i) LHS = tan 5\(^\circ\) tan 25\(^\circ\)tan30\(^\circ\)tan 65\(^\circ\) tan 85\(^\circ\)= 1 tan (90\(^\circ\)- 85\(^\circ\)) tan( 90\(^\circ\)- 65\(^\circ\)) x \(\frac{1}{\sqrt3}\) x \(\cfrac{1}{cot60^\circ}\) \(\cfrac{1}{cot85^\circ}\) cot 85\(^\circ\)cot 65\(^\circ\)\(\frac{1}{\sqrt3}\) \(\cfrac{1}{cot60^\circ}\) \(\cfrac{1}{cot85^\circ}\) = \(\frac{1}{\sqrt3}\) = RHS (ii) LHS = cot12\(^\circ\) cot 38\(^\circ\)cot 52\(^\circ\) cot 60\(^\circ\)cot78\(^\circ\) = tan(90\(^\circ\) - 12\(^\circ\)) x tan (90\(^\circ\) - 38\(^\circ\)) x cot52\(^\circ\)x \(\frac{1}{\sqrt3}\)x cot 78\(^\circ\) = \(\frac{1}{\sqrt3}\) x tan 78\(^\circ\)x tan 52\(^\circ\)x cot52\(^\circ\)x \(\cfrac{1}{tan52^\circ}\) \(\cfrac{1}{tan78^\circ}\) = \(\frac{1}{\sqrt3}\) = RHS (iii) LHS = cos 15\(^\circ\) cos 35\(^\circ\) cosec55\(^\circ\) cos 60\(^\circ\)cosec 75\(^\circ\) cos(90\(^\circ\)- 75\(^\circ\))cos (90\(^\circ\)- 55\(^\circ\))\(\cfrac{1}{sin55^\circ}\)x \(\frac{1}2\)x\(\cfrac{1}{sin75^\circ}\) = sin75\(^\circ\)sin55\(^\circ\)\(\cfrac{1}{sin55^\circ}\) x \(\frac{1}2\)x\(\cfrac{1}{sin75^\circ}\) = \(\frac{1}{2}\) = RHS (iv) LHS = cos1\(^\circ\) cos 2\(^\circ\) cos3\(^\circ\)......cos 180\(^\circ\) = cos1\(^\circ\)x cos 2\(^\circ\)x cos3\(^\circ\)x......x cos 90\(^\circ\)x....x cos180\(^\circ\) = cos1\(^\circ\)x cos 2\(^\circ\)x cos3\(^\circ\)x......x 0 x....x cos180\(^\circ\) = 0 = RHS (v) \((\cfrac{sin49^\circ}{cos41^\circ})\) + \((\cfrac{cos41^\circ}{sin49^\circ})\)= 2 = \((\cfrac{cos(90^\circ-49^\circ)}{cos41^\circ})^2\) + \((\cfrac{cos41^\circ}{cos(90^\circ-49^\circ)})^2\) = \((\cfrac{cos41^\circ}{cos41^\circ})^2\) + \((\cfrac{cos41^\circ}{cos41^\circ})^2\) = 12 + 12 = 1 + 1 = 2 = RHS |
|