1.

Without using trigonometric tables, prove that(i) tan 5\(^\circ\) tan 25\(^\circ\)tan30\(^\circ\)tan 65\(^\circ\) tan 85\(^\circ\)= 1(ii) cot12\(^\circ\) cot 38\(^\circ\)cot 52\(^\circ\) cot 60\(^\circ\)cot78\(^\circ\)= \(\frac{1}{\sqrt3}\)(iii) cos 15\(^\circ\) cos 35\(^\circ\) cosec55\(^\circ\) cos 60\(^\circ\)cosec 75\(^\circ\) = \(\frac{1}2\)(iv) cos1\(^\circ\) cos 2\(^\circ\) cos3\(^\circ\)......cos 180\(^\circ\)= 0(v) \((\cfrac{sin49^\circ}{cos41^\circ})\) + \((\cfrac{cos41^\circ}{sin49^\circ})\)= 2

Answer»

(i) LHS =  tan 5\(^\circ\) tan 25\(^\circ\)tan30\(^\circ\)tan 65\(^\circ\) tan 85\(^\circ\)= 1

tan (90\(^\circ\)- 85\(^\circ\)) tan( 90\(^\circ\)- 65\(^\circ\)) x \(\frac{1}{\sqrt3}\) x \(\cfrac{1}{cot60^\circ}\) \(\cfrac{1}{cot85^\circ}\)

cot 85\(^\circ\)cot 65\(^\circ\)\(\frac{1}{\sqrt3}\)  \(\cfrac{1}{cot60^\circ}\) \(\cfrac{1}{cot85^\circ}\)

\(\frac{1}{\sqrt3}\) = RHS

(ii) LHS =  cot12\(^\circ\) cot 38\(^\circ\)cot 52\(^\circ\) cot 60\(^\circ\)cot78\(^\circ\)

= tan(90\(^\circ\) - 12\(^\circ\)) x tan (90\(^\circ\) - 38\(^\circ\)) x cot52\(^\circ\)\(\frac{1}{\sqrt3}\)x cot 78\(^\circ\)

\(\frac{1}{\sqrt3}\) x tan 78\(^\circ\)x tan 52\(^\circ\)x cot52\(^\circ\)x   \(\cfrac{1}{tan52^\circ}\) \(\cfrac{1}{tan78^\circ}\)

\(\frac{1}{\sqrt3}\)

= RHS

(iii) LHS =  cos 15\(^\circ\) cos 35\(^\circ\) cosec55\(^\circ\) cos 60\(^\circ\)cosec 75\(^\circ\) 

cos(90\(^\circ\)- 75\(^\circ\))cos (90\(^\circ\)- 55\(^\circ\))\(\cfrac{1}{sin55^\circ}\)\(\frac{1}2\)x\(\cfrac{1}{sin75^\circ}\)

= sin75\(^\circ\)sin55\(^\circ\)\(\cfrac{1}{sin55^\circ}\) x \(\frac{1}2\)x\(\cfrac{1}{sin75^\circ}\)

\(\frac{1}{2}\)

= RHS

(iv) LHS = cos1\(^\circ\) cos 2\(^\circ\) cos3\(^\circ\)......cos 180\(^\circ\)

= cos1\(^\circ\)x cos 2\(^\circ\)x cos3\(^\circ\)x......x cos 90\(^\circ\)x....x cos180\(^\circ\)

= cos1\(^\circ\)x cos 2\(^\circ\)x cos3\(^\circ\)x......x 0 x....x cos180\(^\circ\)

= 0

= RHS

(v) \((\cfrac{sin49^\circ}{cos41^\circ})\) + \((\cfrac{cos41^\circ}{sin49^\circ})\)= 2

\((\cfrac{cos(90^\circ-49^\circ)}{cos41^\circ})^2\) + \((\cfrac{cos41^\circ}{​​cos(90^\circ-49^\circ)})^2\)

  \((\cfrac{cos41^\circ}{cos41^\circ})^2\) + \((\cfrac{cos41^\circ}{cos41^\circ})^2\)

= 12 + 12 

= 1 + 1

= 2

= RHS 



Discussion

No Comment Found