1.

. What is the value of\[\cos \left(\frac{A+B}{2}\right) \cos \left(\frac{B+C}{2}\right) \cos \left(\frac{C+A}{2}\right) ?\]

Answer»

If ABC is a triangle 

Then \(A + B + C = \pi\)

\(\therefore cos \left(\frac{A + B}2\right) cos \left(\frac{B +C}2\right) cos\left(\frac{C +A}2\right)\)

\(= cos \left(\frac{\pi - C}2\right) cos \left(\frac{\pi - A}2\right) cos\left(\frac{\pi - B}2\right)\)

\(= cos \left(\frac\pi2 - \frac C2\right) cos \left(\frac\pi2 - \frac A2\right) cos\left(\frac\pi2 - \frac B2\right)\)

\(= sin\left(\frac C2\right) sin\left(\frac A2\right) sin\left(\frac B2\right)\)



Discussion

No Comment Found

Related InterviewSolutions