Saved Bookmarks
| 1. |
What is the inverse of the function f(x) = ln (8x – 4) for {x: x ∈ R | x > 0.5}?1. \({f^{ - 1}}\left( {\text{x}} \right) = \frac{{{e^x}}}{8}\)2. \({f^{ - 1}}\left( {\text{x}} \right) = \frac{{{e^x} - 4}}{8}\)3. \({f^{ - 1}}\left( {\text{x}} \right) = \frac{{{e^x} + 8}}{4}\)4. \({f^{ - 1}}\left( {\text{x}} \right) = \frac{{{e^x} + 4}}{8}\) |
|
Answer» Correct Answer - Option 4 : \({f^{ - 1}}\left( {\text{x}} \right) = \frac{{{e^x} + 4}}{8}\) CONCEPT: A function f: X → Y is defined to be invertible, if there exists a function g: Y → X such that g o f = Ix and f o g = IY. The function g is called the inverse of f and is denoted by f –1.
CALCULATIONS: Given function is f(x) = ln (8x – 4) = y (say) ∴ y = ln (8x – 4) e y = 8x – 4 ⇒ \(x = \;\frac{{{e^y} + 4}}{8} = {f^{ - 1}}\left( {\text{y}} \right)\) ∴ \({f^{ - 1}}\left( {\text{x}} \right) = \frac{{{e^x} + 4}}{8}\) |
|