Saved Bookmarks
| 1. |
We know thatTan (x+y)=tanx+tany/1+tanx tanyPut y =xTan(X+x)= tanx+tanx /1-tanx tanyTan2x= 2tanx/1-tan2x |
|
Answer» To prove sin2x = \(\frac{2tanx}{1+tan^2x}\) Let us start from RHS and prove it equal to LHS. RHS = \(\frac{2tanx}{1+tan^2x}\) ⇒\(\frac{2tanx}{sec^2x}\), as 1 + tan2x = sec2 x,identity ⇒ \(\frac{2\Big(\frac{sinx}{cosx}\Big)}{\frac{1}{cos^2x}}\) ⇒2sinxcosx = sin2x as per sin2x=2sinxcosx identity |
|