Saved Bookmarks
| 1. |
Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:`y cos y = x` : (y sin y + cos y + x) y = y |
|
Answer» `y-cosy=x`……..`(1)` differentiating we get, `(dy)/(dx)+siny*(dy)/(dx)=1` `implies (dy)/(dx)=(1)/(1+siny)` Now, `L.H.S=(y sin y+cosy+x)(dy)/(dx)` `=(y sin y+cosy+y-cosy)*(1)/(1+siny)` [from equation `(1)`] `=(y sin y+y)(1)/(1+siny)` `=y=R.H.S` Therefore, `y-cosy=x` is the solution of given differential equation. |
|