1.

Verify that the given functions (explicit or implicit) is a solution of the corresponding differential equation:`y cos y = x` : (y sin y + cos y + x) y = y

Answer» `y-cosy=x`……..`(1)`
differentiating we get,
`(dy)/(dx)+siny*(dy)/(dx)=1`
`implies (dy)/(dx)=(1)/(1+siny)`
Now, `L.H.S=(y sin y+cosy+x)(dy)/(dx)`
`=(y sin y+cosy+y-cosy)*(1)/(1+siny)` [from equation `(1)`]
`=(y sin y+y)(1)/(1+siny)`
`=y=R.H.S`
Therefore, `y-cosy=x` is the solution of given differential equation.


Discussion

No Comment Found

Related InterviewSolutions