| 1. |
Using the method of variation of parameters, solve y''+ y = x + cos x. |
|
Answer» y" + y = x + cos x It's auxiliary equation is m2 + 1 = 0 m = \(\pm i\) \(\therefore\) C.F. = C1 cos x + C2 sin x Let y1 = cos x & y2 = sin x are two solution of given differential equation R = x + cos x W(y1, y2) = \(\begin{vmatrix}y_1&y_2\\y'_1&y'_2\end{vmatrix}\) = \(\begin{vmatrix}cosx&sin x\\-sin x&cosx\end{vmatrix}\) = cos2x + sin2x = 1 \(\therefore\) u1 = \(\int\frac{\begin{vmatrix}0&sin x\\R&cos x\end{vmatrix}}{W(y_1,y_2)}dx\) \(=\int\frac{\begin{vmatrix}0&sin x\\x+cos x&cos x\end{vmatrix}}{1}dx\) \(= \int(x sin x + sin x cos x)dx\) \(=-\int xsin xdx-\frac12\int sin 2xdx\) \(=-[x\int sin x-\int(\frac{dx}{dx}\int sin xdx)dx)+\frac{cos 2x}4\) = x cos x + \(\int-cos x dx+\frac{cos 2x}4\) = x cos x - sin x + \(\frac{cos 2x}4\) u2 = \(\int\frac{\begin{vmatrix}cos x&0\\-sin x&x+cos x\end{vmatrix}dx}{1}\) \(=\int(xcosx+cos^2x)dx\) = \(\int\) x cos x dx + \(\int\)cos2x dx = x sin x - \(\int\) sin x dx + \(\int\) \(\frac{1+cos 2x}2dx\) = x sin x + cos x + x/2 + \(\frac{sin 2x}4\) \(\therefore\) Complete solution of given differential equation is y = u1y1 + u2y2 + C. F. = C1 cos x + C2 sin x + (x cos x - sin x + \(\frac{cos 2x}4\)) cos x + (x sin x + cos x + x/2 + \(\frac{sin 2x}4\)) sin x = C1 cos x + C2 sin x + x cos2x - sin x cos x + \(\frac{cos xcos 2x}4\) + x sin2x + sin x cos x + \(\frac{xsin x}2+\frac{sinx sin2x}4\) = C1 cos x + C2 sin x + x + \(\frac{xsin x}2+\frac14(sin x sin 2x + cosx cos2x)\) |
|