1.

Using properties of determinants, prove the following `|(3a,-a+b,-a+c),(a-b,3b,c-a),(a-c,b-c,3c)|=3(a+b+c)(ab+bc+ca)`

Answer» `L.H.S. = |[3a,-a+b,-a+c],[a-b,3b,c-a],[a-c,b-c,3c]|`
Applying `C_1->C_1+C_2+C_3`
`=|[a+b+c,-a+b,-a+c],[a+b+c,3b,c-a],[a+b+c,b-c,3c]|`
`=(a+b+c)|[1,-a+b,-a+c],[1,3b,c-a],[1,b-c,3c]|`
Applying `R_2->R_2-R_1 and R_3->R_3-R_1`
`=(a+b+c)|[1,-a+b,-a+c],[0,2b+a,a-b],[0,a-c,2c+a]|`
`=(a+b+c)[(2b+a)(2c+a) - (a-b)(a-c)]`
`=(a+b+c)[4bc+2ab+2ac+a^2 - (a^2+bc-ab-ac)]`
`=(a+b+c)[3ab+3bc+3ca]`
`=3(a+b+c)(ab+bc+ca) = R.H.S.`


Discussion

No Comment Found

Related InterviewSolutions