1.

Using factor theorem, factorize each of the following polynomial:x3 + 13x2 + 32x + 20

Answer»

Let, f (x) = x3 + 13x2 + 32x + 20

The factors of the constant term + 20 are \(\pm\) 1, \(\pm\) 2,\(\pm\) 4, \(\pm\) 5, \(\pm\) 10 and 20

Putting x = -1, we have

f (-1) = (-1)3 + 13 (-1)2 + 32 (-1) + 20

= -1 + 13 – 32 + 20

= 0

So, 

(x + 1) is a factor of f (x)

Let us now divide

f (x) = x3 + 13x2 + 32x + 20 by (x + 1) to get the other factors of f (x)

Using long division method, we get

x3 + 13x2 + 32x + 20 = (x + 1) (x2 + 12x + 20)

x2 + 2x + 20 = x2 + 10x + 2x + 20

= x (x + 10) + 2 (x + 10)

= (x + 10) (x + 2)

Hence, 

x3 + 13x2 + 32x + 20 = (x + 1) (x + 10) (x + 2)



Discussion

No Comment Found