Saved Bookmarks
| 1. |
Using differentials, find the approximate values of the following:(i) 25.02(ii) 0.00913(iii) 0.00713(iv) 401(v) 1514(vi) 25514(vii) 1(2.002)2(viii) loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343(ix) loge 10.02, it being given that loge10 = 2.3026(x) log10 10.1, it being given that log10e = 0.4343(xi) cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian(xii) 125.1(xiii) sin2214(xiv) cos11π36(xv) 8014(xvi) 2913(xvii) 6613(xviii) 26 [CBSE 2000](xix) 37 [CBSE 2000](xx) 0.48 [CBSE 2002C](xxi) 8214 [CBSE 2005](xxii) 178114(xxiii) 3315(xxiv) 36.6(xxv) 2513(xxvi) 49.5 [CBSE 2012](xxvii) 3.96832 [CBSE 2014](xxviii) 1.9995 [NCERT EXEMPLAR](xxix) 0.082 [NCERT EXEMPLAR] |
|
Answer» Using differentials, find the approximate values of the following: (i) (ii) (iii) (iv) (v) (vi) (vii) (viii) loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343 (ix) loge 10.02, it being given that loge10 = 2.3026 (x) log10 10.1, it being given that log10e = 0.4343 (xi) cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian (xii) (xiii) (xiv) (xv) (xvi) (xvii) (xviii) [CBSE 2000] (xix) [CBSE 2000] (xx) [CBSE 2002C] (xxi) [CBSE 2005] (xxii) (xxiii) (xxiv) (xxv) (xxvi) [CBSE 2012] (xxvii) [CBSE 2014] (xxviii) [NCERT EXEMPLAR] (xxix) [NCERT EXEMPLAR] |
|