1.

Using differentials, find the approximate values of the following:(i) 25.02(ii) 0.00913(iii) 0.00713(iv) 401(v) 1514(vi) 25514(vii) 1(2.002)2(viii) loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343(ix) loge 10.02, it being given that loge10 = 2.3026(x) log10 10.1, it being given that log10e = 0.4343(xi) cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian(xii) 125.1(xiii) sin2214(xiv) cos11π36(xv) 8014(xvi) 2913(xvii) 6613(xviii) 26 [CBSE 2000](xix) 37 [CBSE 2000](xx) 0.48 [CBSE 2002C](xxi) 8214 [CBSE 2005](xxii) 178114(xxiii) 3315(xxiv) 36.6(xxv) 2513(xxvi) 49.5 [CBSE 2012](xxvii) 3.96832 [CBSE 2014](xxviii) 1.9995 [NCERT EXEMPLAR](xxix) 0.082 [NCERT EXEMPLAR]

Answer» Using differentials, find the approximate values of the following:



(i) 25.02



(ii) 0.00913



(iii) 0.00713



(iv) 401



(v) 1514



(vi) 25514



(vii) 1(2.002)2



(viii) loge 4.04, it being given that log104 = 0.6021 and log10e = 0.4343



(ix) loge 10.02, it being given that loge10 = 2.3026



(x) log10 10.1, it being given that log10e = 0.4343



(xi) cos 61°, it being given that sin60° = 0.86603 and 1° = 0.01745 radian



(xii) 125.1



(xiii) sin2214



(xiv) cos11π36



(xv) 8014



(xvi) 2913



(xvii) 6613



(xviii) 26 [CBSE 2000]



(xix) 37 [CBSE 2000]



(xx) 0.48 [CBSE 2002C]



(xxi) 8214 [CBSE 2005]



(xxii) 178114



(xxiii) 3315



(xxiv) 36.6



(xxv) 2513



(xxvi) 49.5 [CBSE 2012]



(xxvii) 3.96832 [CBSE 2014]



(xxviii) 1.9995 [NCERT EXEMPLAR]



(xxix) 0.082 [NCERT EXEMPLAR]


Discussion

No Comment Found