1.

Using analytical geometry, prove that the diagonals of a rhombus areperpendicular to each other.

Answer» we need to prove ABCD is a rhombus
where AB=BC=BD=DA
A(0,0) B(S,0)
C(A+S,B) D(A,B)
`AD=SQRT(a^2+b^2)=s`
`a^2+b^2=s^2`
AB=`sqrt(s^2+0^2)=s`
BC=`sqrt((a+s-s)^2+(b-0)^2)=sqrt(a^2+b^2)=S`
CD=`sqrt((a+S-a)^2+(b-b)^2)=sqrt(s^2)=S`
DA=`sqrt(a^2+b^2)=sqrt(s^2)=S`
secondly we need to prove they are perpendicular
`M_(AC)=(b-0)/(a+s-0)=b/(a+s)`
`M_(BD)=(b-0)/(a-s)=b/(a-s)`
`M_(AC)*M_(BD) `
`b/(a+s)*b/(a-s)`
`b^2/(a^2-s^2)`
`b^2/-b^2`
-1
multipliplication of there slope is-1 so they are perpenticular


Discussion

No Comment Found