1.

Use the definition of Odd and Even functions to determine whether each of the following functions is Odd, Even, or neither. Must show your work for credit II!1) \( f(x)=\frac{x}{1-x^{3}} \)2) \( f(x)=\frac{x^{2}}{1+x} \)3) \( \quad f(x)=x-|x| \)

Answer»

(1) f(x) = \(\frac{x}{1-x^3}\) 

f(-x) = \(\frac{-x}{1-(-x)^3}\) 

\(\frac{-x}{1+x^3}\) ≠ -f(x) or f(x)

∴ f(x) is neither even nor odd function.

(2) f(x) = \(\frac{x^2}{1+x}\) 

∴ f(-x) = \(\frac{(-x^2)}{1+(-x)}\) 

\(\frac{x^2}{1-x}\) ≠ -f(x) or f(x).

(3) f(x) = x-|x|

∴ f(-x) = -x-|-x|

= -x-|x|

= -(x+|x|) ≠ -f(x) or f(x)

∴ f(x) is neither even nor odd function.



Discussion

No Comment Found

Related InterviewSolutions