Saved Bookmarks
| 1. |
Two bodies of masses `m_(1)` and `m_(2)` and specific heat capacities `S_(1)` and `S_(2)` are connected by a rod of length l, cross-ssection area A, thermal conductivity K and negligible heat capacity. The whole system is thermally insulated. At time `t=0` , the temperature of the fisrt body is `T_(1)` and the temperature of the second body is `T_(2)(T_(2)gtT_(1))` . Find the temperature difference between the two bodies at time t. |
|
Answer» Correct Answer - A::B::D `(Q/t)=(KA(T_1-T_2))/L` `T_2=(KA(T_1-T_2))/(Lms)` `Fall in temperature in T_1=(KA(T_1-T_2))/(Lm_1s_1)` `Final tempareture in T_1=T_1-=(KA(T_1-T_2))/(Lm_1 s_1)` `Final temprature in ` ` T_2=T_2+(KA(T_1-T_2))/(Lm_2 s_2)` `Change in temparature ` ` T_1-(KA(T_1-T_2))/(Lm_1 s_1)` `=(T_2+(KA(T_1-T_2))/(Lm_2 s_2)` `=(T_1-T_2)` `-[(KA(T_1-T_2))/(Lm_1 s_1)+(KA(T_1-T_2))/(Lm_2 s_2)]` `IndT=(KA)/(L)((M_2)(S_2) +(M_1)(S_1)/(M_1)(S_1)(M_2)(S_2))` So difference in tempareture `=(T_2-T_1)e^(-lambda t)` `where (lambda)=(KA)/(l)((m_1)(s_1)+(m_2)(s_2))/((m_1)(s_1)(m_2)(s_2))`. |
|