Saved Bookmarks
| 1. |
Thesolution of the differential equation `(dy)/(dx)=(x+y)/x`satisfying the condition `y""(1)""=""1`is(1) `y""="ln"x""+""x`(2) `y""=""x"ln"x""+""x^2`(3) `y""=""x e(x-1)`(4) `y""=""x"ln"x""+""x` |
|
Answer» `y = vx` `dy/dx = (x + vx)/x` `= 1+v` diff wrt x `dy/dx = v + x(dv)/dx= 1+ v` `x (dv)/(dx) = 1` `int dv = int dx/x` `v/x = ln x + c` `y = x ln x + cx` `1= c*1 = 1` `c=1` so,`y= x ln x + x` option 4 is correct |
|